المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

الإمام الجواد والمعتصم
مفهوم نظرية الاستخدامات والإشباعات
2023-03-02
السموم الوراثية Genotoxins
17-6-2018
ما مصير الذين يأكلون أموال اليتامى
2024-05-01
الطرق الوزنية Gravimetric Methods
4-7-2018
الحسد
4-4-2022

Philip Kelland  
  
166   11:41 صباحاً   date: 5-11-2016
Author : A D D Craik
Book or Source : Mr Hopkins, Men: Cambridge Reform and British Mathematics in the 19th Century
Page and Part : ...


Read More
Date: 23-10-2016 115
Date: 5-11-2016 204
Date: 23-10-2016 160


Born: 1808 in Dunster, Somerset, England

Died: 7 May 1879 in Bridge of Allen, Stirlingshire, Scotland


Philip Kelland was the son of the Rev. Phillip Kelland (died 1847), curate of Dunster, Somerset and then rector of Landcross, Devon. He studied at Queens' College, Cambridge and was coached privately by William Hopkins, graduating in 1834 as senior wrangler and first Smith's prizeman. Kelland was ordained in the Church of England and was a fellow of Queens' College during 1834-38. In 1838 he was appointed Professor of Mathematics at Edinburgh University in succession to William Wallace. He was the first English-born and wholly English-educated holder of that chair: the unsuccessful applicants included the Scots Duncan F Gregory, Edward Sang and John Scott Russell.

In Edinburgh, Kelland joined with James D Forbes, the Professor of Natural Philosophy, in supporting reforms of the Scottish university system. According to A. Grant, he came to know the Scottish Universities better even than do Scotsmen themselves. He was an effective reformer who won the respect of his colleagues, and a successful and popular teacher who gained the affection of his students. One of his students, the writer Robert Louis Stevenson, wrote kindly that:

... for all his silver hair and worn face, he was not truly old; and he had too much of the unrest and petulant fire of youth, and too much invincible innocence of mind, to play the veteran well ... as I still fancy I behold him frisking actively about the platform, pointer in hand, that which I seem to see most clearly is the way his glasses glittered with affection.

For many years, Kelland served as secretary of the Senatus of Edinburgh University. He was elected FRS in 1838 and FRSE in 1839. He was President of the Royal Society of Edinburgh during 1878-79, dying in office. He was also active in the Edinburgh Society of Arts, a member of the Board of Visitors of the Edinburgh Observatory, an examiner for several of Edinburgh's schools and colleges, and a founder and actuHelvetica adviser of the Life Association of Scotland. For the last-mentioned, he toured Canada and the U.S.A., and published an account of his travels entitled Transatlantic Sketches. In addition to his university duties, he gave mathematical lectures to the Edinburgh Ladies' Educational Association, and he took Sunday services in some of Edinburgh's Episcopal churches. (One obituarist records that Preaching, however, was ... one of the few accomplishments in which he did not excel.) He was twice married, first to a Miss Pilkington of Dublin, and then to a Miss Boswell of Wardie. He was survived by his widow, three sons and two daughters.

His early research work, undertaken at Cambridge, was influenced by Fourier and Cauchy. This is described in his Theory of Heat (1837, 1842) and in some papers; but this work turned out to be based on unsound principles. In all, 28 papers are listed in the Royal Society Catalogue of Scientific Papers: these are mainly on heat, light and water waves. His theoretical work on water waves (1840, 1844), published in Trans. Roy. Soc. Edin., attempted to explain aspects of the important experiments of John Scott Russell, then being carried out near Edinburgh. This work, though flawed in some respects, anticipated some of the results later obtained more convincingly by George Gabriel Stokes. He wrote analytical papers on General Differentiation (1839), and Differential Equations (1853), and gave a geometrical Theory of Parallels outlining a version of non-Euclidean geometry. Kelland produced a much-revised edition of John Playfair'sElements of Geometry and a successful textbook of Algebra. He wrote on the reform of the Scottish Universities, and edited the collected works of Thomas Young. Late in life, he collaborated with Peter Guthrie Tait on an Introduction to Quaternions.

Though not a research mathematician of the highest rank, Kelland had a great influence on the development of education in Scotland, and he attained a high standard of mathematical instruction.


 

Books:

  1. A D D Craik, Mr Hopkins, Men: Cambridge Reform and British Mathematics in the 19th Century (Cambridge 2007)

Articles:

  1. Obituary notices by A Grant, P G Tait and G Chrystal, Proc. Roy. Soc. Edin. X (1878-80), 208-211, 321-329..
  2. A D D Craik, The origins of water-wave theory, Ann. Rev. Fluid Mech. (2002). 
    http://www.annualreviews.org/doi/abs/10.1146%2Fannurev.fluid.36.050802.122118
  3. G E Davie, The Democratic Intellect. (Edinburgh, 1961)
  4. Robert Louis Stevenson, Some College Memories, in Memories & Portraits.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.