تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
DYNAMIC PROGRAMMING-EXAMPLES
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 77-83
17-10-2016
371
1.1 EXAMPLE 1: DYNAMICS WITH THREE VELOCITIES. Let us begin with a fairly easy problem:
where our set of control parameters is
A = {−1, 0, 1}.
We want to minimize
and so take for our payoff functional
As our first illustration of dynamic programming, we will compute the value function v(x, t) and confirm that it does indeed solve the appropriate Hamilton Jacobi-Bellman equation. To do this, we first introduce the three regions:
We will consider the three cases as to which region the initial data (x, t) lie within.
Region III. In this case we should take α ≡ −1, to steer as close to the origin 0 as quickly as possible. (See the next picture.) Then
Region I. In this region, we should take α ≡ 1, in which case we can similarly compute
Region II. In this region we take α ≡ ±1, until we hit the origin, after which we take α ≡ 0. We therefore calculate that v(x, t) = −x2/2 in this region.
Checking the Hamilton-Jacobi-Bellman PDE. Now the Hamilton-Jacobi-Bellman equation for our problem reads
(1.1)
for f = a, r = −|x|. We rewrite this as
We must check that the value function v, defined explicitly above in Regions I-III,
does in fact solve this PDE, with the terminal condition that v(x, 1) = g(x) = 0.
Now in Region II v = −x2/2 , vt = 0, vx = −x. Hence
vt + |vx| − |x| = 0 + | − x| − |x| = 0 in Region II,
in accordance with (HJB).
In Region III we have
Hence
vt + |vx| − |x| = x − 1 + t + |t − 1| − |x| = 0 in Region III,
because x > 0 there.
Likewise the Hamilton-Jacobi-Bellman PDE holds in Region I.
REMARKS. (i) In the example, v is not continuously differentiable on the borderlines between Regions II and I or III.
(ii) In general, it may not be possible actually to find the optimal feedback control. For example, reconsider the above problem, but now with A = {−1, 1}.
We still have α = sgn(vx), but there is no optimal control in Region II.
1.2 EXAMPLE 2: ROCKET RAILROAD CAR. Recall that the equations of motion in this model are
and
To use the method of dynamic programming, we define v(x1, x2) to be minus the least time it takes to get to the origin (0, 0), given we start at the point (x1, x2).
What is the Hamilton-Jacobi-Bellman equation? Note v does not depend on t, and so we have
For
Hence our PDE reads
and consequently
Checking the Hamilton-Jacobi-Bellman PDE. We now confirm that vreally satisfies (HJB). For this, define the regions
A direct computation, the details of which we omit, reveals that
This confirms that our (HJB) equation holds in Region I, and a similar calculation holds in Region II.
Optimal control. Since
the optimal control is
α = sgn vx2 .
1.3 EXAMPLE 3: GENERAL LINEAR-QUADRATIC REGULATOR
For this important problem, we are given matrices M,B,D ∈ Mn×n, N ∈ Mn×m, C ∈ Mm×m; and assume
B,C,D are symmetric
And
nonnegative definite, and C is invertible.
We take the linear dynamics
for which we want to minimize the quadratic cost functional
So we must maximize the payoff
The control values are unconstrained, meaning that the control parameter values can range over all of A = Rm.
We will solve by dynamic programming the problem of designing an optimal control. To carry out this plan, we first compute the Hamilton-Jacobi-Bellman equation
We also have the terminal condition
v(x, T) = −xTDx
Minimization. For what value of the control parameter a is the minimum attained? To understand this, we define Q(a) := (∇v)TNa−aTCa, and determine where Q has a minimum by computing the partial derivatives Qaj for j = 1, . . . ,m and setting them equal to 0. This gives the identitites
This is the formula for the optimal feedback control: It will be very useful once we compute the value function v.
Finding the value function. We insert our formula a = 1/2C−1NT∇v into(HJB), and this PDE then reads
Our next move is to guess the form of the solution, namely
v(x, t) = xTK(t)x,
provided the symmetric n×n-matrix valued function K(.) is properly selected. Will this guess work?
Now, since −xTK(T)x = −v(x, T) = xTDx, we must have the terminal condition that
K(T) = −D.
Next, compute that
This identity will hold if K(.) satisfies the matrix Riccati equation
In summary, if we can solve the Riccati equation (R), we can construct an optimal feedback control
α∗(t) = C−1NTK(t)x(t)
Furthermore, (R) in fact does have a solution, as explained for instance in the book of Fleming-Rishel [F-R].
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.