تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
CONTROLLABILITY, BANG-BANG PRINCIPLE-CONTROLLABILITY OF LINEAR EQUATIONS.
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 16-24
5-10-2016
421
According to the variation of parameters formula, the solution of (ODE) for a given control α(.) is
where X(t) = etM. Furthermore, observe that
x0∈ C(t)
if and only if (1.1) there exists a control α(.) ∈ A such that x(t) = 0 if and only if
(1.2)
If and only if
(1.3)
We make use of these formulas to study the reachable set:
THEOREM 1.2 (STRUCTURE OF REACHABLE SET).
(i) The reachable set C is symmetric and convex.
(ii) Also, if x0 ∈ C(t¯), then x0 ∈ C(t) for all times t ≥ t-.
DEFINITIONS.
(i) We say a set S is symmetric if x ∈ S implies −x ∈ S.
(ii) The set S is convex if x, xˆ ∈ S and 0 ≤ λ ≤ 1 imply λx + (1 − λ) xˆ ∈ S.
Proof. 1. (Symmetry) Let t ≥ 0 and x0 ∈ C(t). Then
for some admissible control α ∈ A. Therefore
−α ∈ A since the set A is symmetric. Therefore −x0 ∈ C(t), and so each set C(t) symmetric. It follows that C is symmetric.
2. (Convexity) Take
for appropriate times t, tˆ ≥ 0. Assume t ≤ tˆ. Then
Define a new control
and hence x0 ∈ C(tˆ). Now let 0 ≤ λ ≤ 1, and observe
3. Assertion (ii) follows from the foregoing if we take t¯= tˆ.
A SIMPLE EXAMPLE. Let n = 2 and m = 1, A = [−1, 1], and write x(t) = (x1(t), x2(t))T . Suppose
This is a system of the form x˙ = Mx + Nα, for
Clearly C = {(x1, x2) | x1 = 0}, the x2–axis.
We next wish to establish some general algebraic conditions ensuring that C contains a neighborhood of the origin.
DEFINITION. The controllability matrix is
THEOREM 1.3 (CONTROLLABILITY MATRIX). We have
Rank G = n
and only if
0 ∈ C◦.
NOTATION. We write C◦ for the interior of the set C. Remember that
rank of G = number of linearly independent rows of G
= number of linearly independent columns of G.
Clearly rank G ≤ n.
Proof. 1. Suppose first that rank G < n. This means that the linear span of the columns of G has dimension less than or equal to n − 1. Thus there exists a vector b ∈ Rn, b = 0, orthogonal to each column of G. This implies
bTG = 0
and so
bTN = bTMN = ….. = bTMn−1N = 0.
2. We claim next that in fact
(1.4) bTMkN = 0 for all positive integers k.
To confirm this, recall that
p(λ) := det(λI −M)
is the characteristic polynomial of M. The Cayley–Hamilton Theorem states that
p(M) = 0.
So if we write
Similarly,
The claim (1.4) is proved.
Now notice that
according to (1.4).
3. Assume next that x0 ∈ C(t). This is equivalent to having
This says that b is orthogonal x0 . In other words, C must lie in the hyperplane orthogonal to b ≠ 0. Consequently C◦ = ∅.
4. Conversely, assume 0 ∉C◦. Thus 0 ∉C◦(t) for all t > 0. Since C(t) is convex, there exists a supporting hyperplane to C(t) through 0. This means that there exists b = 0 such that b. x0 ≤ 0 for all x0 ∈ C(t).
Choose any x0 ∈ C(t). Then
for some control α, and therefore
We assert that therefore
(1.5) bTX−1 (s)N ≡ 0,
a proof of which follows as a lemma below. We rewrite (2.5) as
(1.6) bT e−sMN ≡ 0.
Let s = 0 to see that bTN = 0. Next differentiate (1.6) with respect to s, to find that
bT (−M)e−sMN ≡ 0.
For s = 0 this says
bTMN = 0.
We repeatedly differentiate, to deduce
bTMkN = 0 for all k = 0, 1, . . . ,
and so bTG = 0. This implies rank G < n, since b = 0.
LEMMA 1.4 (INTEGRAL INEQUALITIES). Assume that
(1.7)
for all α(.) ∈ A. Then
bTX−1 (s)N ≡ 0.
Proof. Replacing α by −α in (1.7), we see that
for all α(.) ∈ A. Define
v(s) := bTX−1 (s)N.
If v /≡ 0, then v(s0)≠0 for some s0. Then there exists an interval I such that s0 ∈ I and v = 0 on I. Now define α(.) ∈ A this way:
This implies the contradiction that v ≡ 0 in I.
DEFINITION. We say the linear system (ODE) is controllable if C = Rn.
THEOREM 1.5 (CRITERION FOR CONTROLLABILITY). Let A be the cube [−1, 1] n in Rn. Suppose as well that rank G = n, and Re λ < 0 for each
eigenvalue λ of the matrix M.
Then the system (ODE) is controllable.
Proof. Since rank G = n, Theorem 1.3 tells us that C contains some ball B centered at 0. Now take any x0 ∈ Rn and consider the evolution
in other words, take the control α(.) ≡ 0. Since Re λ < 0 for each eigenvalue λ of M, then the origin is asymptotically stable. So there exists a time T such that x(T) ∈ B. Thus x(T) ∈ B ⊂ C; and hence there exists a control α(.) ∈ A steering x(T) into 0 in finite time.
EXAMPLE. We once again consider the rocket railroad car, from §1.2, for which n = 2, m = 1, A = [−1, 1], and
Therefore
rank G = 2 = n.
Also, the characteristic polynomial of the matrix M is
Since the eigenvalues are both 0, we fail to satisfy the hypotheses of Theorem 1.5.
This example motivates the following extension of the previous theorem:
THEOREM 1.6 (IMPROVED CRITERION FOR CONTROLLABILITY). Assume rank G = n and Re λ ≤ 0 for each eigenvalue λ of M.
Then the system (ODE) is controllable.
Proof. 1. If C≠ Rn, then the convexity of C implies that there exist a vector b ≠0 and a real number μ such that
(1.8) b .x0≤ μ
for all x0 ∈ C. Indeed, in the picture we see that b .(x0 − z0) ≤ 0; and this implies (1.8) for μ := b . z0.
We will derive a contradiction.
2. Given b≠0,μ∈ R, our intention is to find x0 ∈ C so that (1.8) fails. Recall x0 ∈ C if and only if there exist a time t > 0 and a control α(.) ∈ A such that
(1.9)
To see this, suppose instead that v ≡ 0. Then k times differentiate the expression bTX−1(s)N with respect to s and set s = 0, to discover
bTMkN = 0
for k = 0, 1, 2, . . . . This implies b is orthogonal to the columns of G, and so rank G < n. This is a contradiction to our hypothesis, and therefore (1.9) holds.
4. Next, define α(.) this way:
We want to find a time t > 0 so that
In fact, we assert that
(1.10)
To begin the proof of (1.10), introduce the function
We will find an ODE φ satisfies. Take p(.) to be the characteristic polynomial of M. Then
since p(M) = 0, according to the Cayley–Hamilton Theorem. But since p (− d/dt) v(t) ≡0, it follows that
Hence φ solves the (n + 1)th order ODE
We also knowLet μ1, . . . ,μ n+1 be the solutions of μ p(−μ) = 0. According to ODE theory, we can write
φ(t) = sum of terms of the form pi(t)eμ it
for appropriate polynomials pi(.).
Furthermore, we see that μn+1 = 0 and μk = −λk, where λ1, . . . , λn are the eigenvalues of M. By assumption Re μk ≥ 0, for k = 1, . . . , n. If
Then
that is, φ(t) → 0 as t → ∞. This is a contradiction to the representation formula of φ(t) = Σpi(t)eμit, with Re μi ≥ 0. Assertion (1.10) is proved.
5. Consequently given any μ, there exists t > 0 such that
a contradiction to (1.8). Therefore C = Rn.
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.