تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
THE PONTRYAGIN MAXIMUM PRINCIPLE-REVIEW OF LAGRANGE MULTIPLIERS.
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 45-47
9-10-2016
356
CONSTRAINTS AND LAGRANGEMULTIPLIERS.What first strikes us about general optimal control problems is the occurence of many constraints, most notably that the dynamics be governed by the differential equation
This is in contrast to standard calculus of variations problems, where we could take any curve x(.) as a candidate for a minimizer.
Now it is a general principle of variational and optimization theory that “constraints create Lagrange multipliers” and furthermore that these Lagrange multipliers often “contain valuable information”. This section provides a quick review of the standard method of Lagrange multipliers in solving multivariable constrained optimization problems.
UNCONSTRAINED OPTIMIZATION. Suppose first that we wish to find a maximum point for a given smooth function f : Rn → R. In this case there is no constraint, and therefore if f(x∗) = maxx∈Rn f(x), then x∗ is a critical point of f:
∇f(x∗) = 0.
CONSTRAINED OPTIMIZATION. We modify the problem above by introducing the region
R := {x ∈ Rn | g(x) ≤ 0},
determined by some given function g : Rn → R. Suppose x∗ ∈ R and f(x∗) = maxx∈R f(x). We would like a characterization of x∗ in terms of the gradients of f and g.
Case 1: x∗ lies in the interior of R. Then the constraint is inactive, and so
(1.1) ∇f(x∗ ) = 0.
Case 2: x∗ lies on ∂R. We look at the direction of the vector ∇f(x∗). A geometric picture like Figure 1 is impossible; for if it were so, then f(y∗) would be greater that f(x∗) for some other point y∗ ∈ ∂R. So it must be ∇f(x∗) is perpendicular to ∂R at x∗, as shown in Figure 2.
Since ∇g is perpendicular to ∂R = {g = 0}, it follows that ∇f(x∗) is parallel to ∇g(x∗). Therefore
(1.2) ∇f(x∗) = λ∇g(x∗)
for some real number λ, called a Lagrange multiplier.
CRITIQUE. The foregoing argument is in fact incomplete, since we implicitly assumed that ∇g(x∗) = 0, in which case the Implicit Function Theorem implies that the set {g = 0} is an (n − 1)-dimensional surface near x∗ (as illustrated).
If instead ∇g(x∗) = 0, the set {g = 0} need not have this simple form near x∗; and the reasoning discussed as Case 2 above is not complete.
The correct statement is this:
(1.3)
If μ= 0, we can divide by μ and convert to the formulation (1.2). And if ∇g(x∗) = 0, we can take λ = 1, μ = 0, making assertion (1.3) correct (if not particularly useful).
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.