تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
THE PONTRYAGIN MAXIMUM PRINCIPLE-CALCULUS OF VARIATIONS, HAMILTONIAN DYNAMICS
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 41-45
8-10-2016
442
We begin in this section with a quick introduction to some variational methods.
These ideas will later serve as motivation for the Pontryagin Maximum Principle.
Assume we are given a smooth function L : Rn × Rn → R, L = L(x, v); L is called the Lagrangian. Let T > 0, x0, x1 ∈ Rn be given.
BASIC PROBLEM OF THE CALCULUS OF VARIATIONS. Find a curve x∗(.) : [0, T] → Rn that minimizes the functional
(1.1)
among all functions x(.) satisfying x(0) = x0 and x(T) = x1.
Now assume x∗(.) solves our variational problem. The fundamental question is this: how can we characterize x∗(.)?
1.1 DERIVATION OF EULER–LAGRANGE EQUATIONS.
NOTATION.We write L = L(x, v), and regard the variable x as denoting position, the variable v as denoting velocity. The partial derivatives of L are
THEOREM 1.1 (EULER–LAGRANGE EQUATIONS). Let x∗(.) solve the calculus of variations problem. Then x∗(.) solves the Euler–Lagrange differential equations:
The significance of preceding theorem is that if we can solve the Euler–Lagrange equations (E-L), then the solution of our original calculus of variations problem (assuming it exists) will be among the solutions.
Note that (E-L) is a quasilinear system of n second–order ODE. The ith component of the system reads
Proof. 1. Select any smooth curve y[0, T] → Rn, satisfying y(0) = y(T) = 0.
Define
i(τ ) := I[x(.) + τy(.)]
for τ ∈ R and x(.) = x∗(.). (To simplify we omit the superscript ∗.) Notice that x(.) + τy(.) takes on the proper values at the endpoints. Hence, since x(.) is
minimizer, we have
i(τ ) ≥ I[x(.)] = i(0).
Consequently i(.) has a minimum at τ = 0, and so i′(0) = 0.
2. We must compute i′ (τ ). Note first that
This equality holds for all choices of y : [0, T] → Rn, with y(0) = y(T) = 0.
3. Fix any 1 ≤ j ≤ n. Choose y(.) so that
where ψ is an arbitary function. Use this choice of y(.) above:
Integrate by parts, recalling that ψ(0) = ψ(T) = 0:
This holds for all ψ : [0, T] → R, ψ(0) = ψ(T) = 0 and therefore
for all times 0 ≤ t ≤ T. To see this, observe that otherwise Lxj – d/dt (Lvj ) would be, say, positive on some subinterval on I ⊆ [0, T]. Choose ψ ≡ 0 off I, ψ > 0 on I.
Then
a contradiction.
1.2 CONVERSION TO HAMILTON’S EQUATIONS.
DEFINITION. For the given curve x(.), define
p(t) := ∇vL(x(t), x˙ (t)) (0 ≤ t ≤ T).
We call p(.) the generalized momentum.
Our intention now is to rewrite the Euler–Lagrange equations as a system of first–order ODE for x(.), p(.).
IMPORTANT HYPOTHESIS: Assume that for all x, p ∈ Rn, we can solve the equation
(1.2) p = ∇vL(x, v)
for v in terms of x and p. That is, we suppose we can solve the identity (1.2) for
v = v(x, p).
DEFINITION. Define the dynamical systems Hamiltonian H : Rn × Rn → R by the formula
H(x, p) = p . v(x, p) − L(x, v(x, p)),
where v is defined above.
NOTATION. The partial derivatives of H are
and we write
∇xH := (Hx1 , . . . ,Hxn), ∇pH := (Hp1 , . . . ,Hpn).
THEOREM 1.2 (HAMILTONIAN DYNAMICS). Let x(.) solve the EulerLagrange equations (E-L) and define p(.)as above. Then the pair (x(.), p(.)) solves Hamilton’s equations:
Furthermore, the mapping t → H(x(t), p(t)) is constant.
Proof. Recall that H(x, p) = p . v(x, p) − L(x, v(x, p)), where v = v(x, p) or, equivalently, p = ∇vL(x, v). Then
because p = ∇vL. Now p(t) = ∇vL(x(t), x˙ (t)) if and only if x˙ (t) = v(x(t), p(t)).
Therefore (E-L) implies
A PHYSICAL EXAMPLE. We define the Lagrangian
which we interpret as the kinetic energy minus the potential energy V . Then
∇xL = −∇V (x), ∇vL = mv.
Therefore the Euler-Lagrange equation is
which is Newton’s law. Furthermore
p = ∇vL(x, v) = mv
is the momentum, and the Hamiltonian is
the sum of the kinetic and potential energies. For this example, Hamilton’s equations read
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.