تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
THE PONTRYAGIN MAXIMUM PRINCIPLE-STATEMENT OF PONTRYAGIN MAXIMUM PRINCIPLE
المؤلف: Lawrence C. Evans
المصدر: An Introduction to Mathematical Optimal Control Theory
الجزء والصفحة: 47-50
9-10-2016
376
We come now to the key assertion of this chapter, the theoretically interesting and practically useful theorem that if α∗(.) is an optimal control, then there exists a function p∗(.), called the costate, that satisfies a certain maximization principle. We should think of the function p∗(.) as a sort of Lagrange multiplier, which appears owing to the constraint that the optimal curve x∗(.) must satisfy (ODE). And just as conventional Lagrange multipliers are useful for actual calculations, so also will be the costate.
We quote Francis Clarke [C2]: “The maximum principle was, in fact, the culmination of a long search in the calculus of variations for a comprehensive multiplier rule, which is the correct way to view it: p(t) is a “Lagrange multiplier” . . . It makes optimal control a design tool, whereas the calculus of variations was a way to study nature.”
1.1 FIXED TIME, FREE ENDPOINT PROBLEM. Let us review the
basic set-up for our control problem.
We are given A ⊆ Rm and also f : Rn×A → Rn, x0 ∈ Rn. We as before denote the set of admissible controls by
A = {α(.) : [0,∞) → A | α(.) is measurable}.
Then given α(.) ∈ A, we solve for the corresponding evolution of our system:
We also introduce the payoff functional
where the terminal time T > 0, running payoff r : Rn ×A → R and terminal payoff
g : Rn → R are given.
BASIC PROBLEM: Find a control α∗(.) such that
The Pontryagin Maximum Principle, stated below, asserts the existence of a function p∗(.), which together with the optimal trajectory x∗(.) satisfies an analog of Hamilton’s ODE from §4.1. For this, we will need an appropriate Hamiltonian:
DEFINITION. The control theory Hamiltonian is the function
H(x, p, a) := f (x, a) .p + r(x, a) (x, p ∈ Rn, a ∈ A).
THEOREM 1.1 (PONTRYAGIN MAXIMUM PRINCIPLE). Assume α∗(.) is optimal for (ODE), (P) and x∗(.) is the corresponding trajectory.
Then there exists a function p∗ : [0, T] → Rn such that
REMARKS AND INTERPRETATIONS. (i) The identities (ADJ) are the adjoint equations and (M) the maximization principle. Notice that (ODE) and (ADJ) resemble the structure of Hamilton’s equations,
We also call (T) the transversality condition and will discuss its significance later.
(ii) More precisely, formula (ODE) says that for 1 ≤ i ≤ n, we have
which is just the original equation of motion. Likewise, (ADJ) says
1.2 FREE TIME, FIXED ENDPOINT PROBLEM. Let us next record the appropriate form of the Maximum Principle for a fixed endpoint problem.
As before, given a control α(.) ∈ A, we solve for the corresponding evolution of our system:
Assume now that a target point x1 ∈ Rn is given. We introduce then the payoff functional
Here r : Rn × A → R is the given running payoff, and τ = τ [α()] ≤ ∞ denotes the first time the solution of (ODE) hits the target point x1.
As before, the basic problem is to find an optimal control α∗(.) such that
Define the Hamiltonian H .
THEOREM 1.2 (PONTRYAGIN MAXIMUM PRINCIPLE). Assume α∗(.) is optimal for (ODE), (P) and x∗(.) is the corresponding trajectory.
Then there exists a function p∗ : [0, τ ∗] → Rn such that
Here τ∗ denotes the first time the trajectory x∗(.) hits the target point x1. We call x∗(.) the state of the optimally controlled system and p∗(.) the costate.
REMARK AND WARNING. More precisely, we should define
H(x, p, q, a) = f (x, a) . p + r(x, a)q (q ∈ R).
A more careful statement of the Maximum Principle says “there exists a constant q ≥ 0 and a function p∗ : [0, t∗] → Rn such that (ODE), (ADJ), and (M) hold”.
If q > 0, we can renormalize to get q = 1, as we have done above. If q = 0, then H does not depend on running payoff r and in this case the Pontryagin Maximum Principle is not useful. This is a so–called “abnormal problem”.
References
[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.
[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.
[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.
[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.
[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.
[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.
[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.
[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).
[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.
[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.
[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.
[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.
[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.
[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.
[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.
[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.
[T] William J. Terrell, Some fundamental control theory I: Controllability, observability, and duality, American Math Monthly 106 (1999), 705–719.