المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

مجفف
1-12-2019
أحمد بن محمد بن أحمد بن إبراهيم العصفوري.
17-7-2016
تأثير المذيب
2024-01-22
ذو الأربعة
2023-03-12
ايتان لبيان دور المصلحين
29-1-2022
( صرمة ) الراهب
2023-02-23

Complexes with metal–ligand π-bonding  
  
561   02:02 مساءاً   date: 14-9-2016
Author : CATHERINE E. HOUSECROFT AND ALAN G. SHARPE
Book or Source : INORGANIC CHEMISTRY
Page and Part : 2th ed p 566


Read More
Date: 27-2-2017 668
Date: 18-6-2019 667
Date: 20-6-2019 738

Complexes with metal–ligand π-bonding

   The metal dxy, dyz and dxz atomic orbitals (the t2g set) are nonbonding in an [ML6]n+, σ-bonded complex (Figure 1.1) and these orbitals may overlap with ligand orbitals of the correct symmetry to give π-interactions (Figure 1.2). Although π-bonding between metal and ligand d orbitals is sometimes considered for interactions between metals and phosphine ligands (e.g. PR3 or PF3), it is more realistic to consider the roles of ligand σ*-orbitals as the acceptor orbitals.  Two types of ligand must be differentiated: π-donor and π-acceptor ligands.   A π-donor ligand donates electrons to the metal centre in an interaction that involves a filled ligand orbital and an empty metal orbital; a π-acceptor ligand accepts electrons from the metal centre in an interaction that involves a filled metal orbital and an empty ligand orbital. π-Donor ligands include Cl-, Br- and I- and the metal– ligand π-interaction involves transfer of electrons from filled ligand p orbitals to the metal centre (Figure 1.2a). Examples of π-acceptor ligands are CO, N2, NO and alkenes, and the metal–ligand π-bonds arise from the back donation of electrons from the metal centre to vacant antibonding orbitals on the ligand (for example, Figure 1.2b).

Fig. 1.1 An approximate MO diagram for the formation of [ML6]n+ (where M is a first row metal) using the ligand group orbital approach; the orbitals are shown pictorially in Figure 1.1. The bonding only involves M_L π-interactions.

Fig. 1.2 π-Bond formation in a linear L_M_L unit in which the metal and ligand donor atoms lie on the x axis: (a) between metal dxz and ligand pz orbitals as for L = I-, an example of a π-donor ligand; and (b) between metal dxz and ligand π*-orbitals as for L = CO, an example of a π-acceptor ligand.

π-Acceptor ligands can stabilize low oxidation state metal complexes. Figure 1.3 shows partial MO diagrams which describe metal–ligand π- interactions in octahedral complexes; the metal s and p orbitals which are involved in σ-bonding (see Figure 1.1) have been omitted. Figure 1.3a shows the interaction between a metal ion and six π-donor ligands; electrons are omitted from the diagram, and we return to them later. The ligand group π-orbitals are filled and lie above, but relatively close to, the ligand σ-orbitals, and interaction with the metal dxy, dyz and dxz atomic orbitals leads to bonding (t2g) and antibonding (t2g*) MOs. The energy separation between the t2g* and eg* levels corresponds to Δoct. Figure 1.3b shows the interaction between a metal ion and six π-acceptor ligands. The vacant ligand π* orbitals lie significantly higher in energy than the ligand σ-orbitals. Orbital interaction leads to bonding (t2g) and antibonding (t2g*) MOs as before, but now the t2g* MOs are at high energy and Δoct is identified as the energy separation between the t2g and eg* levels (Figure 1.3b).

Fig. 1.3 Approximate partial MO diagrams for metal–ligand π-bonding in an octahedral complex: (a) with π-donor ligands and (b) with π-acceptor ligands. In addition to the MOs shown, σ-bonding in the complex involves the a1g and t1u MOs (see Figure 1.1). Electrons are omitted from the diagram, because we are dealing with a general Mn+ ion. Compared with Figure 1.1, the energy scale is expanded.

    Although Figures 1.1 and 1.3 are qualitative, they reveal important differences between octahedral [ML6]n+ complexes containing σ-donor, π-donor and π-acceptor ligands:

  • for a complex with π-donor ligands, increased π-donation stabilizes the t2g level and destabilizes the t2g*, thus decreasing Δoct;
  • for a complex with π-acceptor ligands, increased π-acceptance stabilizes the t2g level, increasing Δoct.

   The above points are consistent with the positions of the ligands in the spectrochemical series; π-donors such as I- and Br- are weak-field, while π-acceptor ligands such as CO and [CN]- are strong-field ligands.   Let us complete this section by considering the occupancies of the MOs in Figures Figure 1.3a and Figure 1.3b. Six π-donor ligands provide 18 electrons (12 σ- and six π-electrons) and these can notionally be considered to occupy the a1g, t1u, eg and t2g orbitals of the complex. The occupancy of the t2g* and eg* levels corresponds to the number of valence electrons of the metal ion. Six π-acceptor ligands provide 12 electrons (the π-ligand orbitals are empty) and, formally, we can place these in the a1g, t1u and eg orbitals of the complex. The number of electrons supplied by the metal centre then corresponds to the occupancy of the t2g and eg* levels. Since occupying antibonding MOs is detrimental to metal–ligand bond formation, it follows that, for example, octahedral complexes with π-accepting ligands will not be favoured for metal centres with d7, d8, d9 or d10 configurations.  

   This last point brings us to back to some fundamental observations in experimental inorganic chemistry: d-block metal organometallic and related complexes tend to obey the effective atomic number rule or 18-electron rule.

    A low oxidation state organometallic complex contains π-acceptor ligands and the metal centre tends to acquire 18 electrons in its valence shell (the 18 electron rule), thus filling the valence orbitals, e.g. Cr in Cr(CO)6, Fe in Fe(CO)5, and Ni in Ni(CO)4.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .