Read More
Date: 29-4-2022
1542
Date: 12-4-2022
2735
Date: 17-3-2022
2156
|
A traceable graph is a graph that possesses a Hamiltonian path. Hamiltonian graphs are therefore traceable, but the converse is not necessarily true. Graphs that are not traceable are said to be untraceable.
The numbers of traceable graphs on , 2, ... are 1, 1, 2, 5, 18, 91, 734, ... (OEIS A057864), where the singleton graph is conventionally considered traceable. The first few are illustrated above, with a Hamiltonian path indicated in orange for each.
Every self-complementary graph is traceable (Clapham 1974; Camion 1975; Farrugia 1999, p. 52).
The following table lists some named graphs that are traceable but not Hamiltonian.
graph | |
theta-0 graph | 7 |
Petersen graph | 10 |
Herschel graph | 11 |
Blanuša snarks | 18 |
flower snark | 20 |
Coxeter graph | 28 |
double star snark | 30 |
Tutte's graph | 46 |
Szekeres snark | 50 |
McLaughlin graph | 276 |
Camion, P. "Hamiltonian Chains in Self-Complementary Graphs." In Colloque sur la théorie des graphes (Paris, 1974) (Ed. P. P. Gillis and S. Huyberechts). Cahiers du Centre Études de Recherche Opér. (Bruxelles) 17, pp. 173-183, 1975.
Clapham, C. R. J. "Hamiltonian Arcs in Self-Complementary Graphs." Disc. Math. 8, 251-255, 1974.
Farrugia, A. "Self-Complementary Graphs and Generalisations: a Comprehensive Reference Manual." Aug. 1999. http://www.alastairfarrugia.net/sc-graph/sc-graph-survey.pdf.
Sloane, N. J. A. Sequence A057864 in "The On-Line Encyclopedia of Integer Sequences."Thomassen, C. "Hypohamiltonian and Hypotraceable Graphs." Disc. Math. 9, 91-96, 1974.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|