Read More
Date: 23-4-2022
1565
Date: 4-3-2022
1274
Date: 28-7-2016
1327
|
The number of colors sufficient for map coloring on a surface of genus is given by the Heawood conjecture,
where is the floor function. The fact that (which is called the chromatic number) is also necessary was proved by Ringel and Youngs (1968) with two exceptions: the sphere (which requires the same number of colors as the plane) and the Klein bottle.
A -holed torus therefore requires colors. For , 1, ..., the first few values of are 4, 7 (illustrated above, M. Malak, pers. comm., Feb. 22, 2006), 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, ... (OEIS A000934). A set of regions requiring the maximum of seven regions is shown above for a normal torus
The above figure shows the relationship between the Heawood graph and the 7-color torus coloring.
Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 244, 1976.
Cadwell, J. H. Ch. 8 in Topics in Recreational Mathematics. Cambridge, England: Cambridge University Press, 1966.
Gardner, M. "Mathematical Games: The Celebrated Four-Color Map Problem of Topology." Sci. Amer. 203, 218-222, Sep. 1960.
Ringel, G. Map Color Theorem. New York: Springer-Verlag, 1974.
Ringel, G. and Youngs, J. W. T. "Solution of the Heawood Map-Coloring Problem." Proc. Nat. Acad. Sci. USA 60, 438-445, 1968.
Sloane, N. J. A. Sequence A000934/M3292 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 274-275, 1999.
Wagon, S. "Map Coloring on a Torus." §7.5 in Mathematica in Action. New York: W. H. Freeman, pp. 232-237, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 70, 1986.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 228-229, 1991.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|