The dominance relation on a set of points in Euclidean -space is the intersection of the
coordinate-wise orderings. A point
dominates a point
provided that every coordinate of
is at least as large as the corresponding coordinate of
.
A partition dominates a partition
if, for all
, the sum of the
largest parts of
is
the sum of the
largest parts of
. For example, for
,
dominates all other partitions, while
is dominated by all others. In contrast,
and
do not dominate each other (Skiena 1990, p. 52).
The dominance orders in are precisely the partially ordered sets of dimension at most
.
REFERENCES:
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.
Stanton, D. and White, D. Constructive Combinatorics. New York: Springer-Verlag, 1986.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|