المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

اسماء الإشارة
23-12-2014
مرض لفحة الساق الصمغية في البطيخ Gummy stem blight
2024-10-09
ماذا بعد أينشتاين؟
22-1-2023
تحويل الكهرباء إلى حركة
2024-01-14
دعاء الإمام زين العابدين (عليه ‌السلام) بعد عصر يوم الجمعة.
2023-07-08
 منحني معايرة معقد الخارصين
2024-03-21

Exponential Transform  
  
562   02:08 صباحاً   date: 27-10-2020
Author : Sloane, N. J. A. and Plouffe, S.
Book or Source : The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press
Page and Part : pp. 19-20


Read More
Date: 17-12-2019 762
Date: 22-2-2020 667
Date: 27-8-2020 2479

Exponential Transform

The exponential transform is the transformation of a sequence a_1a_2, ... into a sequence b_1b_2, ... according to the equation

 1+sum_(n=1)^infty(b_nx^n)/(n!)=exp(sum_(n=1)^infty(a_nx^n)/(n!)).

The inverse ("logarithmic") transform is then given by

 sum_(n=1)^infty(a_nx^n)/(n!)=ln(1+sum_(n=1)^infty(b_nx^n)/(n!)).

The exponential transform relates the number a_n of labeled connected graphs on n nodes satisfying some property with the corresponding total number b_n (not necessarily connected) of labeled graphs on n nodes. In this application, the transform is called Riddell's formula for labeled graphs.


REFERENCES:

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, pp. 19-20, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.