Read More
Date: 25-4-2019
![]()
Date: 26-9-2019
![]()
Date: 19-5-2019
![]() |
A Fourier series-like expansion of a twice continuously differentiable function
![]() |
(1) |
for , where
is a zeroth order Bessel function of the first kind. The coefficients are then given by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Gradshteyn and Ryzhik 2000, p. 926), where and care should be taken to avoid the two typos of Iyanaga and Kawada (1980) and Itô (1986).
As an example, consider , which has
and therefore
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
so
![]() |
(9) |
(Whittaker and Watson 1990, p. 378; Gradshteyn and Ryzhik 2000, p. 926). This is illustrated above with 1 (red), 2 (green), 3 (blue), and 4 terms (violet) included.
Similarly, for ,
![]() |
(10) |
REFERENCES:
Gradshteyn, I. S. and Ryzhik, I. M. "The Series ." Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 926, 2000.
Itô, K. (Ed.). Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 2. Cambridge, MA: MIT Press, p. 1803, 1986.
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1473, 1980.
Schlömilch. Z. für Math. Phys. 3, 137-165, 1857.
Whittaker, E. T. and Watson, G. N. "Schlömilch's Expansion of an Arbitrary Function in a Series of Bessel Coefficients of Order Zero." §17.82 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 377-378, 1990.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|