المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Sine  
  
1328   03:29 مساءً   date: 25-11-2018
Author : Abramowitz, M. and Stegun, I. A
Book or Source : "Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 27-11-2018 420
Date: 18-11-2018 576
Date: 18-10-2018 339

Sine

  

Trigonometry Sin

The sine function sinx is one of the basic functions encountered in trigonometry (the others being the cosecant, cosine, cotangent, secant, and tangent). Let theta be an angle measured counterclockwise from the x-axis along an arc of the unit circle. Then sintheta is the vertical coordinate of the arc endpoint, as illustrated in the left figure above.

SineDiagram

The common schoolbook definition of the sine of an angle theta in a right triangle (which is equivalent to the definition just given) is as the ratio of the lengths of the side of the triangle opposite the angle and the hypotenuse, i.e.,

 sintheta=(opposite)/(hypotenuse).

(1)

A convenient mnemonic for remembering the definition of the sine, as well as the cosine and tangent, is SOHCAHTOA (sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).

As a result of its definition, the sine function is periodic with period 2pi. By the Pythagorean theorem, sintheta also obeys the identity

 sin^2theta+cos^2theta=1.

(2)

SinReImAbs
 
 
  Min   Max    
  Re    
  Im      

The definition of the sine function can be extended to complex arguments z, illustrated above, using the definition

sinz = (e^(iz)-e^(-iz))/(2i)

(3)

= 1/2i(e^(-iz)-e^(iz)),

(4)

where e is the base of the natural logarithm and i is the imaginary number. Sine is an entire function and is implemented in the Wolfram Language as Sin[z].

A related function known as the hyperbolic sine is similarly defined,

 sinhz=1/2(e^z-e^(-z)).

(5)

The sine function can be defined analytically by the infinite sum

 sinx=sum_(n=1)^infty((-1)^(n-1))/((2n-1)!)x^(2n-1).

(6)

It is also given by the imaginary part of the complex exponential

 sinx=I[e^(ix)].

(7)

The multiplicative inverse of the sine function is the cosecant, defined as

 cscx=1/(sinx).

(8)

The sine function is also given by the limit

 sin(z)=-pilim_(n->infty)1/(lnn)sum_(k=1)^infty(mu(k))/kln(n/k)frac((kz)/(2pi)),

(9)

where mu(k) is the Möbius function and frac(x) is the fractional part (M. Trott).

The derivative of sinx is

 d/(dx)sinx=cosx,

(10)

and its indefinite integral is

 intsinxdx=-cosx+C,

(11)

where C is a constant of integration.

Using the results from the exponential sum formulas

sum_(n=0)^(N)sin(nx) = I[sum_(n=0)^(N)e^(inx)]

(12)

= I[(e^(i(N+1)x)-1)/(e^(ix)-1)]

(13)

= I[(e^(i(N+1)x/2))/(e^(ix/2))(e^(i(N+1)x/2)-e^(-i(N+1)x/2))/(e^(ix/2)-e^(-ix/2))]

(14)

= (sin(1/2(N+1)x))/(sin(1/2x))I[e^(iNx/2)]

(15)

= (sin(1/2Nx)sin[1/2(N+1)x])/(sin(1/2x)).

(16)

Similarly,

sum_(n=0)^(infty)p^nsin(nx) = I[sum_(n=0)^(infty)p^ne^(inx)]

(17)

= I[(1-pe^(-ix))/(1-2pcosx+p^2)]

(18)

= (psinx)/(1-2pcosx+p^2).

(19)

The sum of sin^2(kx) can also be done in closed form,

 sum_(k=0)^Nsin^2(kx)=1/4{1+2N-cscxsin[x(1+2N)]}.

(20)

A related sum identity is given by

 sum_(k=1)^(n-1)sin((kpi)/n)=cot(pi/(2n))

(21)

(T. Drane, pers. comm., Apr. 19, 2006).

Product identities include

 pisproduct_(n=1)^infty(1-(s^2)/(n^2))=sin(pis),

(22)

which is more commonly written as an identity for the sinc function or in the form

 sinx=xproduct_(n=1)^infty(1-(x^2)/(n^2pi^2))

(23)

(Edwards 2001, pp. 18 and 47; Borwein et al. 2004, p. 5). Another product formula is

 product_(k=1)^(n-1)sin((kpi)/n)=2^(1-n)n

(24)

(T. Drane, pers. comm., Apr. 19, 2006).

The sine function obeys the identity

 sin(ntheta)=2costhetasin[(n-1)theta]-sin[(n-2)theta]

(25)

and the multiple-angle formula

 sin(nx)=sum_(k=0)^n(n; k)cos^kxsin^(n-k)xsin[1/2(n-k)pi],

(26)

where (n; k) is a binomial coefficient. It is related to tan(x/2) via

 sinx=(2tan(1/2x))/(1+tan^2(1/2x))

(27)

(Trott 2006, p. 39).

A curious identity is given by

 (sin(nalpha))/(sinalpha)=sum_(j=1)^nproduct_(k=1; k!=j)^n(sin(alpha+theta_j-theta_k))/(sin(theta_j-theta_k))

(28)

for all alpha and theta_j!=theta_k (Calogero 1999; Beylkin and Mohlenkamp 2002; Trott 2005, pp. 5-6).

Cvijović and Klinowski (1995) show that the sum

 S_nu(alpha)=sum_(k=0)^infty(sin(2k+1)alpha)/((2k+1)^nu)

(29)

has closed form for nu=2n+1,

 S_(2n+1)(alpha)=((-1)^n)/(4(2n)!)pi^(2n+1)E_(2n)(alpha/pi),

(30)

where E_n(x) is an Euler polynomial.

A continued fraction representation of sinx is

 sinx=x/(1+(x^2)/((2·3-x^2)+(2·3x^2)/((4·5-x^2)+(4·5x^2)/((6·7-x^2)+...))))

(31)

(Olds 1963, p. 138).

The value of sin(2pi/n) is irrational for all integers n>1 except 2, 4, and 12, for which sin(pi)=0sin(pi/2)=1, and sin(pi/6)=1/2, respectively, a result that is essentially known as Niven's theorem.

The Fourier transform of sin(2pik_0x) is given by

F_x[sin(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)sin(2pik_0x)dx

(32)

= 1/2i[delta(k+k_0)-delta(k-k_0)].

(33)

A definite integral involving sinx is given by

 int_0^inftysin(x^n)dx=Gamma(1+1/n)sin(pi/(2n))

(34)

for n>1 where Gamma(z) is the gamma function (R. Mabry, pers. comm., Dec. 15, 2005; T. Drane, pers. comm., Apr. 21, 2006).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 71-79, 1972.

Beylkin, G. and Mohlenkamp, M. J. Proc. Nat. Acad. Sci. USA 99, 10246, 2002.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 225, 1987.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Calogero, F. "Remarkable Matrices and Trigonometric Identities. II." Commun. Appl. Math. 3, 267-270, 1999.

Cvijović, D. and Klinowski, J. "Closed-Form Summation of Some Trigonometric Series." Math. Comput. 64, 205-210, 1995.

Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.

Hansen, E. R. A Table of Series and Products. Englewood Cliffs, NJ: Prentice-Hall, 1975.

Olds, C. D. Continued Fractions. New York: Random House, 1963.

Project Mathematics. "Sines and Cosines, Parts I-III." Videotape. http://www.projectmathematics.com/sincos1.htm.

Jeffrey, A. "Trigonometric Identities." §2.4 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 111-117, 2000.

Spanier, J. and Oldham, K. B. "The Sine sin(x) and Cosine cos(x) Functions." Ch. 32 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 295-310, 1987.

Tropfke, J. Teil IB, §1. "Die Begriffe des Sinus und Kosinus eines Winkels." In Geschichte der Elementar-Mathematik in systematischer Darstellung mit besonderer Berücksichtigung der Fachwörter, fünfter Band, zweite aufl. Berlin and Leipzig, Germany: de Gruyter, pp. 11-23, 1923.

Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.

Zwillinger, D. (Ed.). "Trigonometric or Circular Functions." §6.1 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 452-460, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.