المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

استثارة لهبية flame excitation
5-5-2019
أنظمة تصريف المياه المتخلفة من المناطق الحضرية
21-11-2019
إنماء البلورات
2023-09-19
المقدمــــــــــــة
3-8-2016
عدم التهوية Anaerobia
8-5-2017
معرفة الوالدين مسؤوليتهما
12-1-2016

Calculation of the spectrum due to spherical accretion  
  
1738   02:38 مساءً   date: 8-2-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 290

Calculation of the spectrum due to spherical accretion

Once the radial profiles (optical depth, density, velocity, and temperature) are determined, it is possible to calculate the emission spectrum for a given magnetic field profile. The predicted observable luminosity Lν0 at infinity (Shapiro 1973, Melia 1992) with relativistic corrections is

 (1.1)

where

 (1.2)

Figure 1.1. The full curve is an example spectrum profile from (1.1) with parameters but with δB = 0.001. Also shown are the observed values and upper limits with the recent Chandra results (Baganoff et al 2001a, b) highlighted in bold. At a distance of 8.5 kpc, for Galactic Center sources Fν  1023L.

The sum over j is truncated at J, for which rJ RA. It is assumed thatτν0 (J ) = 0. This ignores the possible absorption by Sgr A West of the low frequency (ν0 < 109 Hz) radiation (Beckert et al 1996). Sgr A West is an H II region surrounding Sgr A*.

An example of a spectrum arising from these equations is shown in figure 1.1. Although only a representative solution, the primary features of all spherical accretion models are apparent. First, there is little emission in the infrared, unlike disk accretion scenarios where the gas circularizes and thermalizes before accreting. Second, there is significant X-ray emission due to thermal bremsstrahlung. However, in the case of Sgr A*, the observed quiescent X-ray spectrum is too soft to be due to thermal bremsstrahlung alone; the sub-mm emission, coming from very close to the black hole, is likely to be upscattered via inverse Compton and produce additional X-ray emission. Third, the spectral index in the radio is ∼1, rather steeper than the observed value of ∼0.3 (Falcke et al 1998). This last characteristic deserves some attention.

If the gas temperature and density profiles are at all similar to the Bondi-Hoyle results given earlier, and, if the radio emission is due to magnetic bremsstrahlung from a thermal distribution of particles, it is impossible to match both the observed 1 GHz radio flux and the soft X-ray upper limits (Liu and Melia 2001). Since the emission must be blackbody limited, one can put a lower limit on the temperature at a given radius. Similarly, the gas temperature must be less than the virial temperature, putting an upper limit on the temperature. For frequencies less than hν/kBT , the thermal bremsstrahlung emissivity, j bν , scales as n2T 1/2 ∝ r5/2. Thus, the volume-integrated emissivity will increase with the size of the emission region as r 1/2 so that the minimum luminosity corresponds to the minimum size and maximum temperature consistent with the blackbody and virial limits. Limits which result in the proper observed 1 GHz flux yield a minimum radius and maximum temperature of approximately 2000 rs and 109 K, respectively. Since the soft X-ray emission is not likely to be self-absorbed while the GHz emission may be, the ratio of the volume integrated emissivities must be less than the ratio of the observed fluxes. For an equipartition type magnetic field profile, the result is that the soft X-ray luminosity cannot be less than ∼105 times the 1 GHz luminosity. Thus, since the observed ratio is ∼107 (Falcke et al 1998, Baganoff et al 2001a, b), the X-ray emission cannot be due to thermal magnetic bremsstrahlung. Profiles which deviate substantially from the Bondi–Hoyle results can avoid this problem. If one assumes an inflow velocity that is larger than free-fall, for example, one can reproduce the radio and X-ray emission, even when including self-Compton (Coker and Markoff 2001). However, the most likely cause of deviation from Bondi–Hoyle is a non-spherical accretion flow so that one has effectively a radially dependent mass accretion rate. A non-thermal particle distribution due to shocks in the flow could also alter the spectrum enough to invalidate these arguments.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.