المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

أهداف التسويق الفيروسي
5-9-2016
العوامل الجغرافية المؤثرة في خطة المدينة-العوامل الطبيعية
28/9/2022
لنتعلم مبادئ التمريض ورعاية الآخرين
6-8-2022
لين بحزم مع المرأة
19-1-2016
سرقة ميراث آل البيت (عليهم السلام)
7-02-2015
الإنشطار النووي
10-1-2016

Accelerated frames of reference, equivalence principle and Einstein’s field equation  
  
1560   05:46 مساءً   date: 23-1-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 11


Read More
Date: 21-11-2020 1742
Date: 11-11-2020 1210
Date: 21-11-2020 1287

Accelerated frames of reference, equivalence principle and Einstein’s field equation

An observer who measures the acceleration of a freely falling body within a sufficiently small laboratory obtains the same results whether his/her laboratory is at rest in a gravitational field or appropriately accelerated in gravity-free space. Consequently, the quantity representing the inertial forces in the equation of motion should be similar to the quantity representing the gravitational forces. In an inertial frame in Cartesian coordinates xμ, a force-free test particle obeys the equation of motion

 (1.1)

Figure 1.5. The local equivalence of an accelerated frame of reference and a gravitational field. Note, if we compare the gravitational and the inertial forces acting on two point particles in each case, because of the tidal effect, we can distinguish the laboratory on earth and that in space. However, locally, one test particle moves in the same way in both laboratories.

Thus it moves in a straight line xμ(τ ) = aμ+bμτ (aμ, bμ constant vectors). The space laboratory represents an accelerated frame of reference with coordinates     xμ'. We apply a coordinate transformation xα' (xμ) to (1.1) and find

 (1.2)

where the connection components

 (1.3)

represent the inertial field. For a rotating coordinate system, e.g. encompasses the Coriolis force etc. So far Γα'β'γ' is only an coordinate artifact and has no degrees of freedom of its own. We can always introduce a global coordinate system such that the Γα'β'γ' vanish everywhere.

We can deduce an alternative representation of Γα'β'γ' from the tensorial transformation behavior of the metric tensor (we suppress the dashes here):

 (1.4)

Thus, the connection components, also called the Christoffel symbols in the case of a Riemannian space, can be expressed in terms of ten functions gαβ = gβα which tentatively serve as the gravitational or inertial potential. In order to be able to choose a coordinate system such that Γα'β'γ' = 0 globally, the Γαβγ have to fulfil a certain integrability condition, namely their ‘curl’ has to vanish:

 (1.5)

The quantity Rαβμν is called the Riemannian curvature tensor. If Rαβμν = 0, we have a flat Minkowski spacetime (possibly in curvilinear coordinates), whereas Rαβμν ≠ 0 implies a curved Riemannian spacetime. In a Riemannian space, the curvature tensor fulfills certain algebraic identities which reduce its number of independent components to 20:

 (1.6)

Let us now construct the field equation for gravity by trying to proceed along the same line as in other successful field theories, such as electrodynamics. The equations of motion with the abbreviation (.) = d/dτ read:

 (1.7)

This fits quite nicely into our considerations in the previous section. The current, which couples to the inertial field, is the quantity m μν which corresponds to the energy–momentum tensor of dust T αβ = ρ α β. This coincides with the earlier suggestion that T αβ should be the source of gravity.

In electrodynamics, we have the four-potential Aμ = (φelec, A), φelec is the 3D scalar electric potential, A the 3D vector potential. Furthermore, the electromagnetic field strength is denoted by Fαβ = α Aββ Aα and the current by J α. With the Lorenz gauge, μ Aμ = 0, we find that

divergence of field dAlembertian on potential source current

 (1.8)

However, it is not so simple in gravity. Gravitational radiation carries energy, and energy is, as we have argued earlier, itself a source of gravity. Thus, the gravitational field has a self-interaction which distinguishes it from the electromagnetic field. Consequently, gravity is described by a nonlinear field equation of the following type:

 (1.9)

That the nonlinearity is only quadratic will be a result of our subsequent considerations.

So much for the general outline. To fix an exact equation, we need some additional criteria. In particular, we have to say something about general covariance. We consider an accelerated frame of reference locally equivalent to one which is at rest in a gravitational field. Gravity is a relatively weak force, but it has an infinite range and is all pervading. We will hardly find a gravity-free spot in the universe. Hence, in general we find ourselves in a non-inertial frame, even if the deviation from an inertial system may be negligible on small scales. From this point of view, the fundamental laws of physics should be covariant not only under Poincar'e transformations but also under general coordinate transformations. There is not much change with respect to the algebra of tensors, but a very noticeable change comes about in tensor analysis: the partial derivative of a tensor will not transform like a tensor. This can be fixed by introducing the so-called covariant derivative:

 (1.10)

By replacing the partial derivatives in the special relativistic formulae by covariant ones, we obtain general covariant equations. This ‘correspondence’ principle mostly, but not always, yields physical reasonable generalizations of the special relativistic laws.

In Newton's theory, the mass density as source is linearly related to the tidal force. Can we also define tidal forces in general relativity?

            The equation of motion (1.1) has a geometrical interpretation, too. The metric allows the definition of an invariant length of a curve γ , parametrized by xμ = xμ(τ ), connecting two spacetime points A = xμ(0) and B = xμ(τ0) by means of the line integral

 (1.11)

This length l represents the proper time of an observer who moves along the path γ from A to B. The necessary and sufficient condition for γ to be a curve of extremal length is found to be (provided γ is parametrized by its arc length)

 (1.12)

This is the Euler–Lagrange equation for the variational problem δʃ ds = 0; and it coincides with the equation of motion (1.1). In geometry, (1.12) is called the geodesic equation and its solutions xμ are geodesics. In flat space, the geodesics are straight lines, the geodesics of a sphere are circuits, etc.

Thus, freely falling particles move along the geodesics of Riemannian spacetime. Now we can address the question of tidal accelerations between two freely falling particles. Let the vector vμ be the vector describing the distance between two particles moving on infinitesimally adjacent geodesics. A simple calculation yields the equation for the geodesic deviation:

 (1.13)

where D/Dτ denotes the absolute derivative along the curve xα. Eventually, the tidal acceleration is represented by the curvature tensor. In Newton's theory, the tidal force is linearly related to the tidal acceleration. The energy–momentum tensor, as the suspected source of gravity, is a symmetric second-rank tensor. Therefore it has ten independent components.

Now only the problem of how to interrelate the second-rank symmetric energy–momentum tensor to the fourth-rank Riemannian curvature tensor remains. In analogy to the Newtonian case we would like this relation to be linear. It turns out that such a relation has to be of the form

 (1.14)

with the Ricci tensor

 (1.15)

and the curvature scalar

 (1.16)

The constants α and β have to be fixed by additional conditions. The vanishing divergence of the energy–momentum together with the second Bianchi identity (a kind of integrability condition)

 (1.17)

leads to Einstein’s field equation:

 (1.18)

The value κ := 8πG/c4 of Einstein’s gravitational constant can be determined by a transition to the Newtonian limit of general relativity. Moreover, we have added a cosmological term containing the cosmological constant Λ.

The energy–momentum tensor has ten independent components whereas the Riemannian curvature tensor has 20 independent components. Hence, the energy– momentum tensor determines only a part of the curvature. Indeed, we have the decomposition

 (1.19)

where

 (1.20)

(for recent work on the L-tensor). This part of the curvature is algebraically linked to the matter distribution by means of Einstein’s equation. Consequently, it vanishes in vacuum and only the irreducible fourth-rank part Cαβγ δ , the conformal Weyl curvature with ten independent components, remains.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.