المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

نشاة الصناعة وتطورها
2024-10-16
Frustration
19-2-2021
مضمون الانتهاكات الجنائية الدولية
25-3-2017
Fertilization
9-5-2016
قاعدة الخير والشر
2023-12-21
عود للحديث عن ابن ظافر
2023-04-02

Charles Julien Brianchon  
  
143   02:38 مساءاً   date: 12-7-2016
Author : S L Greitzer
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 12-7-2016 148
Date: 21-7-2016 221
Date: 14-7-2016 175

Born: 19 December 1783 in Sèvres, France
Died: 29 April 1864 in Versailles, France

 

Charles-Julien Brianchon's background is not known. We do not know anything of his primary or secondary education and the first definite educational record that exists is his entry into the École Polytechnique in 1804 at the age of eighteen.

At the École Polytechnique in Paris, Brianchon studied under Monge. In fact he published his first paper Sur les surfaces courbes du second degré in the Journal de l'École Polytechnique while still a student. In that paper Brianchon rediscovered Pascal's Magic Hexagon. He showed that in any hexagon formed of six tangents to a conic, the three diagonals meet at a point. This result is often called Brianchon's Theorem and it is the result for which he is best known. In fact this theorem is simply the dual of Pascal's theorem which was proved in 1639:-

If all the vertices of a hexagon lie on a conic, and if the opposite sides intersect, then the points of intersection lie on a line.

In [1] Greitzer points out that Pascal recognised that his theorem was projective in nature so it is surprising that it took 167 years before someone realised that its dual, which is Brianchon's Theorem, would also be true.

Brianchon graduated in 1808 as first in his class. One might have expected him to continue at this stage to an academic career but these were unusual times in France. Napoleon Bonaparte had declared an empire in 1804 with himself as Emperor. He basically controlled continental Europe and he had only the British to fight against, but without control of the seas he could not mount an invasion. The British under Nelson won a decisive victory at Trafalgar where the Franco-Spanish fleet was destroyed. Napoleon then tried the tactic of blockading Britain and so he gave an order to stop all trade with the British Isles. However Portugal was reluctant to stop trading with Britain, both for economic and political reasons, and Napoleon decided to send his armies to Portugal to force them to comply with his orders. At around this time Brianchon graduated from the École Polytechnique and became a lieutenant in artillery in Napoleon's army.

Although Spain allowed Napoleon's armies to cross their country the campaign was to turn out badly for Napoleon. The army occupied Lisbon but when Napoleon tried to install Joseph Bonaparte, king of Naples, as the Spanish king there was a revolt in Spain. Brianchon is said to have fought bravely in Napoleon's campaign in both Portugal and in Spain, but he was on the losing side for Napoleon's forces were defeated in both Spain and Portugal. Not only was Brianchon a brave soldier, but he was also said to be a very able one.

Brianchon remained with Napoleon's troops through the next few years but, despite a fine military career, the hard army life affected his health. In 1813, with all the fighting over, he applied to leave active service because of ill health and to take up a teaching position. It took him five years to find an appointment but eventually he was successful. In 1818 he become a professor in the Artillery School of the Royal Guard in Vincennes.

Between 1816 and 1818 while he was seeking a teaching appointment Brianchon wrote a number of papers. In these Brianchon proved several further important results in the projective study of conics. However, Brianchon did less and less research into mathematics after his teaching appointment and he turned to other interests. One paper which he did publish after taking up the appointment at Vincennes was a joint publication with Poncelet. In this paper Recherches sur la détermination d'une hyperbole équilatère, au moyen de quatres conditions donnée (1820) there appears a statement and proof of the nine point circle theorem. Certainly they were not the first to discover this theorem, but they were the first to give a proper proof of the theorem and also they used, for the first time, the name "nine point circle".

By 1823 Brianchon's interests were turning to teaching and to chemistry. He published on both these topics but after 1825 he gave up publishing completely and concentrated on teaching.


 

  1. S L Greitzer, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900625.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9016407/Charles-Julien-Brianchon

Articles:

  1. G Pickert, Vom Gnomon zu den Sätzen von Pascal und Brianchon, Praxis Math. 27 (6) (1985), 333-338.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.