المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

Consonants NG
2024-03-11
العدد الكمي الداخلي inner quantum number
4-6-2020
العلاج الخارجي Ex vivo Therapy
5-4-2018
تفسير ظاهرة المد والجزر عند روبرت موراي
2023-07-13
Semantic theory
2024-08-05
المسايليوم الكاذبة Pseudomycelium
19-10-2019

Theon of Smyrna  
  
985   02:20 صباحاً   date: 20-10-2015
Author : O Neugebauer
Book or Source : A history of ancient mathematical astronomy
Page and Part : ...


Read More
Date: 12-10-2015 844
Date: 18-10-2015 4329
Date: 20-10-2015 989

Born: about 70 in Smyrna (now Izmir), Turkey
Died: about 135

 

Little is known of Theon of Smyrna's life. He was called 'the old Theon' by Theon of Alexandria and 'Theon the mathematician' by Ptolemy. The date of his birth is little better than a guess, but we do have some firm data about dates in his life. We know that he was making astronomical observations of Mercury and Venus between 127 and 132 since Ptolemy lists four observations which Theon made in 127, 129, 130 and 132. From these observations Theon made estimates of the greatest angular distance that Mercury and Venus can reach from the Sun. The style of his bust, dedicated by his son 'Theon the priest', gives us the date of his death to within 10 years and it is placed within the period 130-140 (hence our midpoint guess of 135).

Theon's most important work is Expositio rerum mathematicarum ad legendum Platonem utilium. This work is a handbook for philosophy students to show how prime numbers, geometrical numbers such as squares, progressions, music and astronomy are interrelated. Its rather curious title means that it was intended as an introduction to a study of the works of Plato, but this is rather fanciful. As Huxley writes in [1]:-

... the book has little to offer the specialist student of Plato's mathematics. It is, rather, a handbook for philosophy students, written to illustrate how arithmetic, geometry, stereometry, music, and astronomy are interrelated.

The most important feature of the work is the wide range of citations of earlier sources. Its worst feature is its lack of originality. Heath writes [2]:-

Theon's work is a curious medley, valuable, not intrinsically, but for the numerous historical notices which it contains.

In the introduction Theon gives his reason for writing the work:-

Everyone would agree that he could not understand the mathematical arguments used by Plato unless he were practised in this science... One who had become skilled in all geometry and all music and astronomy would be reckoned most happy on making acquaintance with the writings of Plato, but this cannot be come by easily or readily, for it calls for a very great deal of application from youth upwards. In order that those who have failed to become practised in these studies, but aim at a knowledge of his writings, should not wholly fail in their desires, I shall make a summary and concise sketch of the mathematical theorems which are specially necessary for readers of Plato....

The work begins with a collection of theorems which Theon says will be useful for the study of arithmetic, music, geometry, and astronomy in Plato. However his coverage of geometry is none too good and later in the book he makes an excuse for this saying that anyone who reads his book, or the works of Plato, will have already studied elementary geometry.

In the section on numbers Theon adopts a Pythagorean approach, writing about odd numbers, even numbers, prime numbers, composite numbers, square numbers, oblong numbers, triangular numbers, polygonal numbers, circular numbers, spherical numbers, solid numbers with three factors, pyramidal numbers, perfect numbers, deficient numbers and abundant numbers.

The best section of Expositio rerum mathematicarum is the astronomy section which teaches that the Earth is spherical, that mountains are negligible in height compared with the Earth etc. It includes knowledge of conjunctions, eclipses, occultations and transits. However, Neugebauer writes in [3]:-

It is clear that Theon's treatise does not pretend to make original contributions to astronomy. Unfortunately it is also clear that Theon has not fully digested the material he is presenting to his readers.

Theon also wrote commentaries on the main authorities of mathematics and astronomy. In particular he wrote an important work on Ptolemy and another on Plato's Republic which he refers to himself in work which survives. Whether his work on the ancestry of Plato is a separate work or a section of one of his commentaries on Plato's work, it is impossible to say.


 

Books:

  1. T L Heath, A History of Greek Mathematics (2 Vols.) (Oxford, 1921).
  2. O Neugebauer, A history of ancient mathematical astronomy (New York, 1975).

Articles:

3.G C Vedova, Notes on Theon of Smyrna, The American Mathematical Monthly 58 (1951), 675-683.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.