Eukaryotic Gene Transcription: Chromatin structure and gene expression |
![]() ![]() |
Read More
Date: 17-9-2021
![]()
Date: 25-12-2021
![]()
Date: 14-11-2021
![]() |
Eukaryotic Gene Transcription: Chromatin structure and gene expression
The transcription of eukaryotic genes is a far more complicated process than transcription in prokaryotes. Eukaryotic transcription involves separate polymerases for the synthesis of rRNA, tRNA, and mRNA. In addition, a large number of proteins called transcription factors (TF) are involved. TF bind to distinct sites on the DNA within the core promoter region, close (proximal) to it, or some distance away (distal). They are required for both the assembly of a transcription initiation complex at the promoter and the determination of which genes are to be transcribed. [Note: Each eukaryotic RNA pol has its own promoters and TF that bind core promoter sequences.] For TF to recognize and bind to their specific DNA sequences, the chromatin structure in that region must be decondensed (relaxed) to allow access to the DNA.
Chromatin structure and gene expression
The association of DNA with histones to form nucleosomes affects the ability of the transcription machinery to access the DNA to be transcribed. Most actively transcribed genes are found in a relatively decondensed form of chromatin called euchromatin, whereas most inactive segments of DNA are found in highly condensed heterochromatin. The interconversion of these forms is called chromatin remodeling. A major component of chromatin remodeling is the covalent modification of histones (for example, the acetylation of lysine residues at the amino terminus of histone proteins), as shown in Figure 1. Acetylation, mediated by histone acetyltransferases (HAT), eliminates the positive charge on the lysine, thereby decreasing the interaction of the histone with the negatively charged DNA. Removal of the acetyl group by histone deacetylases (HDAC) restores the positive charge and fosters stronger interactions between histones and DNA. [Note: The ATP-dependent repositioning of nucleosomes is also required to access DNA.]
Figure 1: Acetylation/deacetylation of a lysine residue in a histone. Acetyl coenzyme A provides the acetyl group. HAT = histone acetyltransferase; HDAC = histone deacetylase.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|