Read More
Date: 29-9-2021
1131
Date: 18-12-2021
1397
Date: 26-9-2021
2117
|
The pentaflake is a fractal with 5-fold symmetry. As illustrated above, five pentagons can be arranged around an identical pentagon to form the first iteration of the pentaflake. This cluster of six pentagons has the shape of a pentagon with five triangular wedges removed. This construction was first noticed by Albrecht Dürer (Dixon 1991).
For a pentagon of side length 1, the first ring of pentagons has centers at radius
(1) |
where is the golden ratio. The inradius and circumradius are related by
(2) |
and these are related to the side length by
(3) |
The height is
(4) |
giving a radius of the second ring as
(5) |
Continuing, the th pentagon ring is located at
(6) |
Now, the length of the side of the first pentagon compound is given by
(7) |
so the ratio of side lengths of the original pentagon to that of the compound is
(8) |
We can now calculate the dimension of the pentaflake fractal. Let be the number of black pentagons and the length of side of a pentagon after the iteration,
(9) |
|||
(10) |
The capacity dimension is therefore
(11) |
|||
(12) |
|||
(13) |
(OEIS A113212).
An attractive variation obtained by recursive construction of pentagons is illustrated above (Aigner et al. 1991; Zeitler 2002; Trott 2004, pp. 21-22).
REFERENCES:
Aigner, M.; Pein, J.; and Stechmüller, T. T. Math. Semesterber. 38, 242, 1991.
Ding, R.; Schattschneider, D.; and Zamfirescu, T. "Tiling the Pentagon." Discr. Math. 221, 113-124, 2000.
Dixon, R. Mathographics. New York: Dover, pp. 186-188, 1991.
Kabai, S. Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica. Püspökladány, Hungary: Uniconstant, pp. 76 and 109, 2002.
Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, pp. 64-65, 2002.
Lück, R. Mat. Sci. Eng. A 263, 194-296, 2000.
Sloane, N. J. A. Sequence A113212 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 60 and 88, 1999.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 40-42, 2004. http://www.mathematicaguidebooks.org/.
Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, p. 19, 2004. http://www.mathematicaguidebooks.org/.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 104, 1991.
Zeitler, H. Math. Semesterber. 49, 185, 2002.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|