المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

مضادات الحيوية الكاربوهيدراتية Carbohydrate Antibiotics
25-9-2017
الرياء شرك
2023-09-29
فئات الأجانب في القانون الداخلي
2023-03-27
التسليم
2024-09-11
استناد فقهاء الإماميّة بالمرويّات من كتاب علي (عليه السلام) / المجموعة الثامنة والأخيرة.
2024-11-19
EF-Hand Motif
28-4-2016

Deck Transformation  
  
1825   05:56 مساءً   date: 8-5-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 3-6-2021 1876
Date: 17-5-2021 1599
Date: 22-6-2021 3838

Deck Transformation

Deck transformations, also called covering transformations, are defined for any cover p:A->X. They act on A by homeomorphisms which preserve the projection p. Deck transformations can be defined by lifting paths from a space X to its universal cover X^~, which is a simply connected space and is a cover of pi:X^~->X. Every loop in X, say a function f on the unit interval with f(0)=f(1)=p, lifts to a path f^~ in X^~, which only depends on the choice of f^~ in pi^(-1)(p), i.e., the starting point in the preimage of p. Moreover, the endpoint f^~(1) depends only on the homotopy class of f and f^~(0). Given a point q in X^~, and alpha, a member of the fundamental group of X, a point alpha·q is defined to be the endpoint of a lift of a path f which represents alpha.

The deck transformations of a universal cover X^~ form a group Gamma, which is the fundamental group of the quotient space

 X=X^~/Gamma.

Deck transformation

For example, when X is the square torus then X^~ is the plane and the preimage pi^(-1)(p) is a translation of the integer lattice {(n,m)} subset R^2. Any loop in the torus lifts to a path in the plane, with the endpoints lying in the integer lattice. These translated integer lattices are the group orbits of the action of Z×Z on R^2 by addition. The above animation shows the action of some deck transformations on some disks in the plane. The spaces are the torus and its universal cover, the plane. An element of the fundamental group, shown as the path in blue, defines a deck transformation of the universal cover. It moves around the points in the universal cover. The points moved to have the same projection in the torus. The blue path is a loop in the torus, and all of its preimages are shown.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.