المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

لا تخلو الأرض من حجّة .
10-12-2015
الآثار السلبية التي يشارك النقل في خلقها- التلوث- التلوث المائي
3-8-2022
Where does Manganese come from?
29-11-2018
Aperture synthesis
1-9-2020
أحوال النبي محمّد صلّى الله عليه وآله
4-2-2016
Hydrated ions of group 1 elemants
16-1-2018

Whole Number  
  
1229   01:24 صباحاً   date: 24-7-2020
Author : Bourbaki, N.
Book or Source : Elements of Mathematics: Theory of Sets. Paris, France: Hermann, 1968.
Page and Part : ...


Read More
Date: 14-2-2020 604
Date: 10-9-2020 970
Date: 10-4-2020 763

Whole Number

One of the numbers 1, 2, 3, ... (OEIS A000027), also called the counting numbers or natural numbers. 0 is sometimes included in the list of "whole" numbers (Bourbaki 1968, Halmos 1974), but there seems to be no general agreement. Some authors also interpret "whole number" to mean "a number having fractional part of zero," making the whole numbers equivalent to the integers.

Due to lack of standard terminology, the following terms are recommended in preference to "counting number," "natural number," and "whole number."

set name symbol
..., -2-1, 0, 1, 2, ... integers Z
1, 2, 3, 4, ... positive integers Z-+
0, 1, 2, 3, 4, ... nonnegative integers Z-*
0, -1-2-3-4, ... nonpositive integers  
-1-2-3-4, ... negative integers Z--

REFERENCES:

Bourbaki, N. Elements of Mathematics: Theory of Sets. Paris, France: Hermann, 1968.

Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 1974.

Sloane, N. J. A. Sequence A000027/M0472 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.