Read More
Date: 29-1-2020
767
Date: 26-7-2020
564
Date: 22-11-2020
586
|
Let be a compact connected subset of -dimensional Euclidean space. Gross (1964) and Stadje (1981) proved that there is a unique real number such that for all , , ..., , there exists with
(1) |
The magic constant of is defined by
(2) |
where
(3) |
These numbers are also called dispersion numbers and rendezvous values. For any , Gross (1964) and Stadje (1981) proved that
(4) |
If is a subinterval of the line and is a circular disk in the plane, then
(5) |
If is a circle, then
(6) |
(OEIS A060294). An expression for the magic constant of an ellipse in terms of its semimajor and semiminor axes lengths is not known. Nikolas and Yost (1988) showed that for a Reuleaux triangle
(7) |
Denote the maximum value of in -dimensional space by . Then
where is the gamma function (Nikolas and Yost 1988).
An unrelated quantity characteristic of a given magic square is also known as a magic constant.
REFERENCES:
Finch, S. R. "Rendezvous Constants." §8.21 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 537-542, 2003.
Cleary, J.; Morris, S. A.; and Yost, D. "Numerical Geometry--Numbers for Shapes." Amer. Math. Monthly 95, 260-275, 1986.
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, 1994.
Gross, O. The Rendezvous Value of Metric Space. Princeton, NJ: Princeton University Press, pp. 49-53, 1964.
Nikolas, P. and Yost, D. "The Average Distance Property for Subsets of Euclidean Space." Arch. Math. (Basel) 50, 380-384, 1988.
Sloane, N. J. A. Sequence A060294 in "The On-Line Encyclopedia of Integer Sequences."
Stadje, W. "A Property of Compact Connected Spaces." Arch. Math. (Basel) 36, 275-280, 1981.a
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|