Read More
Date: 20-7-2020
![]()
Date: 9-12-2020
![]()
Date: 27-12-2020
![]() |
Given a unit circle, pick two points at random on its circumference, forming a chord. Without loss of generality, the first point can be taken as , and the second by
, with
(by symmetry, the range can be limited to
instead of
). The distance
between the two points is then
![]() |
(1) |
The average distance is then given by
![]() |
(2) |
The probability density function is obtained from
![]() |
(3) |
The raw moments are then
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
giving the first few as
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
(OEIS A000984 and OEIS A093581 and A001803), where the numerators of the odd terms are 4 times OEIS A061549.
The central moments are
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
giving the skewness and kurtosis excess as
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
Bertrand's problem asks for the probability that a chord drawn at random on a circle of radius has length
.
REFERENCES:
Sloane, N. J. A. Sequences A000984/M1645, A001803/M2986, A061549, and A093581 in "The On-Line Encyclopedia of Integer Sequences."
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
العتبة العباسية المقدسة تطلق النسخة الحادية عشرة من مسابقة الجود العالمية للقصيدة العمودية
|
|
|