Read More
Date: 27-8-2019
1581
Date: 17-6-2019
2676
Date: 26-7-2019
1532
|
There are several q-analogs of the sine function.
The two natural definitions of the -sine defined by Koekoek and Swarttouw (1998) are given by
(1) |
|||
(2) |
|||
(3) |
where and are q-exponential functions. The -cosine and -sine functions satisfy the relations
(4) |
|||
(5) |
Another definition of the -sine considered by Gosper (2001) is given by
(6) |
|||
(7) |
|||
(8) |
where is a Jacobi theta function and is defined via
(9) |
This is an odd function of unit amplitude and period with double and triple angle formulas and addition formulas which are analogous to ordinary sine and cosine. For example,
(10) |
where is the q-cosine and is q-pi (Gosper 2001).
REFERENCES:
Gosper, R. W. "Experiments and Discoveries in q-Trigonometry." In Symbolic Computation, Number Theory,Special Functions, Physics and Combinatorics. Proceedings of the Conference Held at the University of Florida, Gainesville, FL, November 11-13, 1999 (Ed. F. G. Garvan and M. E. H. Ismail). Dordrecht, Netherlands: Kluwer, pp. 79-105, 2001.
Koekoek, R. and Swarttouw, R. F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 18-19, 1998.
|
|
لمكافحة الاكتئاب.. عليك بالمشي يوميا هذه المسافة
|
|
|
|
|
تحذيرات من ثوران بركاني هائل قد يفاجئ العالم قريبا
|
|
|
|
|
العتبة العباسية تشارك في معرض النجف الأشرف الدولي للتسوق الشامل
|
|
|