Read More
Date: 22-5-2019
![]()
Date: 31-7-2019
![]()
Date: 30-9-2019
![]() |
The function defined by
![]() |
(1) |
It is related to the polylogarithm by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
and to the Lerch transcendent by
![]() |
(4) |
It takes the special values
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where i is the imaginary unit and is Catalan's constant (Lewin 1958, p. 19). Other special values include
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
where is the Dirichlet lambda function and
is the Dirichlet beta function.
REFERENCES:
Cvijović, D. and Klinowski, J. "Closed-Form Summation of Some Trigonometric Series." Math. Comput. 64, 205-210, 1995.
Edwards, J. A Treatise on the Integral Calculus, Vol. 2. New York: Chelsea, p. 290, 1955.
Legendre, A. M. Exercices de calcul intégral, tome 1. p. 247, 1811.
Lewin, L. "Legendre's Chi-Function." §1.8 in Dilogarithms and Associated Functions. London: Macdonald, pp. 17-19, 1958.
Lewin, L. Polylogarithms and Associated Functions. Amsterdam, Netherlands: North-Holland, pp. 282-283, 1981.
Nielsen, N. "Der Eulersche Dilogarithmus und seine Verallgemeinerungen." Nova Acta Leopoldina, Abh. der Kaiserlich Leopoldinisch-Carolinischen Deutschen Akad. der Naturforsch. 90, 121-212, 1909.
|
|
الصين.. طريقة لمنع تطور قصر النظر لدى تلاميذ المدارس
|
|
|
|
|
ماذا سيحدث خلال كسوف الشمس يوم السبت؟
|
|
|
|
|
قسم الشؤون الدينية يختتم محاضراته الرمضانية في صحن مرقد أبي الفضل العباس (عليه السلام)
|
|
|