Read More
Date: 26-9-2019
![]()
Date: 13-8-2018
![]()
Date: 14-8-2019
![]() |
There are a number of slightly different definitions of the Fresnel integrals. In physics, the Fresnel integrals denoted and
are most often defined by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
so
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
These Fresnel integrals are implemented in the Wolfram Language as FresnelC[z] and FresnelS[z].
and
are entire functions.
![]() |
![]() |
The and
integrals are illustrated above in the complex plane.
They have the special values
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
and
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
An asymptotic expansion for gives
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
Therefore, as ,
and
. The Fresnel integrals are sometimes alternatively defined as
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
Letting so
, and
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
In this form, they have a particularly simple expansion in terms of spherical Bessel functions of the first kind. Using
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
where is a spherical Bessel function of the second kind
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
Related functions ,
,
, and
are defined by
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Fresnel Integrals." §7.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 300-302, 1972.
Leonard, I. E. "More on Fresnel Integrals." Amer. Math. Monthly 95, 431-433, 1988.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Fresnel Integrals, Cosine and Sine Integrals." §6.79 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 248-252, 1992.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Generalized Fresnel Integrals and
." §1.3 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, p. 24, 1990.
Spanier, J. and Oldham, K. B. "The Fresnel Integrals and
." Ch. 39 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 373-383, 1987.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
العتبة العباسية المقدسة تطلق النسخة الحادية عشرة من مسابقة الجود العالمية للقصيدة العمودية
|
|
|