المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
العمرة واقسامها
2024-06-30
العمرة واحكامها
2024-06-30
الطواف واحكامه
2024-06-30
السهو في السعي
2024-06-30
السعي واحكامه
2024-06-30
الحلق واحكامه
2024-06-30

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Harmonic Series  
  
2744   06:11 مساءً   date: 8-8-2019
Author : Arfken, G.
Book or Source : Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press,
Page and Part : ...


Read More
Date: 13-10-2019 1013
Date: 2-10-2019 1205
Date: 22-8-2019 2294

Harmonic Series  

The series

 sum_(k=1)^infty1/k

(1)

is called the harmonic series. It can be shown to diverge using the integral test by comparison with the function 1/x. The divergence, however, is very slow. Divergence of the harmonic series was first demonstrated by Nicole d'Oresme (ca. 1323-1382), but was mislaid for several centuries (Havil 2003, p. 23; Derbyshire 2004, pp. 9-10). The result was proved again by Pietro Mengoli in 1647, by Johann Bernoulli in 1687, and by Jakob Bernoulli shortly thereafter (Derbyshire 2004, pp. 9-10).

Progressions of the form

 1/(a_1),1/(a_1+d),1/(a_1+2d),...

(2)

are also sometimes called harmonic series (Beyer 1987).

Oresme's proof groups the harmonic terms by taking 2, 4, 8, 16, ... terms (after the first two) and noting that each such block has a sum larger than 1/2,

sum_(k=1)^(infty)1/k = 1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+...

(3)

> 1+1/2+1/2+1/2+...,

(4)

and since an infinite sum of 1/2's diverges, so does the harmonic series.

The generalization of the harmonic series

 zeta(n)=sum_(k=1)^infty1/(k^n)

(5)

is known as the Riemann zeta function.

The sum of the first few terms of the harmonic series is given analytically by the nth harmonic number

H_n = sum_(k=1)^(n)1/k

(6)

= gamma+psi_0(n+1),

(7)

where gamma is the Euler-Mascheroni constant and psi_0(x) is the digamma function.

The only values of n for which H_n is a regular number are n=1, 2, and 6 (Havil 2003, pp. 24-25).

The number of terms needed for H_n to exceed 1, 2, 3, ... are 1, 4, 11, 31, 83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, ... (OEIS A004080; DeTemple and Wang 1991). Using the analytic form shows that after 2.5×10^8 terms, the sum is still less than 20. Furthermore, to achieve a sum greater than 100, more than 1.509×10^(43) terms are needed! Written explicitly, the number of terms is

 15092688622113788323693563264538101449859497

(8)

(Boas and Wrench 1971; Gardner 1984, p. 167). More generally, the number of terms needed to equal or exceed 10^110^210^3, ... are 12367, 15092688622113788323693563264538101449859497, 1.10611511...×10^(434), ... (OEIS A096618).

The harmonic series of primes

 sum_(k=1)^infty1/(p_k)

(9)

taken over all primes p_k also diverges (Wells 1986, p. 41) with asymptotic behavior

 sum_(p prime)^x1/p=lnlnx+B_1+o(1),

(10)

(Hardy 1999, p. 50), where B_1 is the Mertens constant.

Rather surprisingly, the alternating series

 sum_(k=1)^infty((-1)^(k-1))/k=ln2

(11)

converges to the natural logarithm of 2. An explicit formula for the partial sum of the alternating series is given by

 sum_(k=1)^n((-1)^(k-1))/k=ln2+1/2(-1)^n[psi_0(1/2+1/2n)-psi_0(1+1/2n)].

(12)

Gardner (1984) notes that this series never reaches an integer sum.

HarmonicSeries

The partial sums of the harmonic series are plotted in the left figure above, together with two related series.

HarmonicSeriesBorweinSum

It is not known if the series

 sum_(n=1)^infty((2/3+1/3sinn)^n)/n

(13)

converges (Borwein et al. 2004, p. 56). After 10^7 terms, the series equals approximately 2.163.



REFERENCES:

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 279-280, 1985.

Atanassov, K. T. 'Notes on the Harmonic Series." Bull. Number Th. Related Topics 10, 10-20, 1986.

Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 8, 1987.

Boas, R. P. and Wrench, J. W. "Partial Sums of the Harmonic Series." Amer. Math. Monthly 78, 864-870, 1971.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 8-9, 2004.

DeTemple, D. W. and Wang, S.-H. "Half Integer Approximations for the Partial Sums of the Harmonic Series." J. Math. Anal. Appl. 160, 149-156, 1991.

Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 165-172, 1984.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Havil, J. "The Harmonic Series." Ch. 2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 21-25, 2003.

Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, p. 217, 1998.

Honsberger, R. "An Intriguing Series." Ch. 10 in Mathematical Gems II. Washington, DC: Math. Assoc. Amer., pp. 98-103, 1976.

Rosenbaum, B. "Solution to Problem E46." Amer. Math. Monthly 41, 48, 1934.

Shutler, P. M. E. "Euler's Constant, Stirling's Approximation and the Riemann Zeta Function." Internat. J. Math. Ed. Sci. Tech. 28, 677-688, 1997.

Sloane, N. J. A. Sequence A004080 in "The On-Line Encyclopedia of Integer Sequences."

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 41, 1986.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.