المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

مميزات التربية الاعلامية
26-12-2020
إحاطة الخطيئة
25-09-2014
تجفيف الحبوب لغرض الخزن
2024-01-26
بدايات الصراع العسكري
29-3-2022
تكنولوجيا النانو في قطاع الزراعة: الكيماويات الزراعية
2023-12-11
فقد مبيدات الحشائش بالتربة
8-12-2015

Sommerfeld,s Formula  
  
1511   02:02 مساءً   date: 30-3-2019
Author : Iyanaga, S. and Kawada, Y.
Book or Source : Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press
Page and Part : pp. 1472 and 1474


Read More
Date: 25-4-2019 1772
Date: 18-7-2019 1092
Date: 25-4-2019 1682

Sommerfeld's Formula

There are (at least) two equations known as Sommerfeld's formula. The first is

 J_nu(z)=1/(2pi)int_(-eta+iinfty)^(2pi-eta+iinfty)e^(izcost)e^(inu(t-pi/2))dt,

where J_nu(z) is a Bessel function of the first kind. The second states that under appropriate restrictions,

 int_0^inftyJ_0(taur)e^(-|x|sqrt(tau^2-k^2))(taudtau)/(sqrt(tau^2-k^2))=(e^(-i|r|sqrt(k^2+x^2)))/(sqrt(r^2+x^2)).

 


REFERENCES:

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1472 and 1474, 1980.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.