Read More
Date: 3-7-2018
592
Date: 5-7-2018
954
Date: 30-12-2018
1121
|
The associated Legendre differential equation is a generalization of the Legendre differential equation given by
(1) |
which can be written
(2) |
(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions to this equation are called the associated Legendre polynomials (if is an integer), or associated Legendre functions of the first kind (if is not an integer). The complete solution is
(3) |
where is a Legendre function of the second kind.
The associated Legendre differential equation is often written in a form obtained by setting . Plugging the identities
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
into (◇) then gives
(8) |
(9 |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 332, 1972.
Moon, P. and Spencer, D. E. Field Theory for Engineers. New York: Van Nostrand, 1961.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|