المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

النباتات البذرية
6-3-2017
علي بن محمد بن علي البهبهاني
26-7-2016
تقنية المحولات الحراري - إيونية Thennoionic Converters
8-1-2022
Phosphatidylserine
13-10-2021
تعريف القدرة والإيجاب
24-10-2014
الإحداثيات اللونية chromaticity coordinates
17-4-2018

Cesare Burali-Forti  
  
160   01:58 مساءً   date: 17-3-2017
Author : H C Kennedy
Book or Source : Peano : Life and Works of Giuseppe Peano
Page and Part : ...


Read More
Date: 17-3-2017 173
Date: 17-3-2017 79
Date: 17-3-2017 169

Born: 13 August 1861 in Arezzo, Italy

Died: 21 January 1931 in Turin, Italy


Cesare Burali-Forti attended the University of Pisa, graduating in 1884. Immediately after graduating he taught in a school but he moved to Turin in 1887 where he was appointed to the Military Academy. Burali-Forti taught analytic projective geometry at the Military Academy where he continued to teach for the rest of his life.

A university teaching position would have been more to Burali-Forti's liking but in this he had difficulties. He was a great believer in vector methods but, at this time, these were not in favour. It is hard to believe from our present view of mathematics that vector methods would ever be less than welcomed. However, at this time many mathematicians opposed vector methods and unfortunately these views prevailed on the committee that considered Burali-Forti's submission for a doctorate. He was failed on these grounds, never tried again, and as a consequence was never able to teach in a university, although he did give informal lecture courses there.

In 1893-94 Burali-Forti gave an informal series of lectures on mathematical logic at the University of Turin. After the course the lectures were written up as a book and Burali-Forti presented a copy of the book to the Academy of Sciences of Turin in June 1894.

At the start of the 1894-95 academic session, Burali-Forti became Peano's assistant at the University of Turin. He was to hold this position until 1896.

The first International Congress of Mathematicians was held in Zurich from 9 to 11 August 1897. Burali-Forti attended the Congress and presented a paper The postulates for the geometry of Euclid and of Lobachevsky to the Geometry section of the Congress.

Burali-Forti is famed as the first discoverer of a set theory paradox in 1897 which was framed in technical terms but in essence reduces to a 'set of all sets' paradox. Cantor was to discover a similar paradox two years later.

As well as set theory and vector analysis, Burali-Forti also worked on linear transformations and their applications to differential geometry.

Not only was Burali-Forti a prolific writer, with over 200 publications, he was also very interested in how to teach mathematics. The "Mathesis" Italian Society of Mathematicians, aimed at school teachers of mathematics, was founded in 1895. Burali-Forti joined Mathesis in academic year 1897-98. He played a major role in the first congress of the Society which was held in Turin in September 1898.

Burali-Forti was a close friend of Peano's but his closest friend and mathematical collaborator was Roberto Marcolongo. Burali-Forti and Marcolongo were called the "vectorial binomial" by their friends. However this collaboration ended when they differed in their views on relativity. Burali-Forti never understood the theory of relativity and, together with Boggio, he wrote a book which claimed to prove that the theory of relativity was impossible.

Kennedy writes in [2]:-

Many of his publications were highly polemical, but in his family circle and among friends he was kind and gentle. He loved music, Bach and Beethoven being his favourite composers. He was a member of no academy. Always an independent thinker, he asked that he not be given a religious funeral.


 

  1. H C Kennedy, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900710.html

Books:

  1. H C Kennedy, Peano : Life and Works of Giuseppe Peano (Dordrecht, 1980).

Articles:

  1. R Feys, Peano et Burali-Forti, précurseurs de la logique combinatoire, Actes du XIème Congrès International de Philosophie, Bruxelles V (Louvain, 1953), 70-72.
  2. P Freguglia, Cesare Burali-Forti and studies on geometric calculus (Italian), Italian mathematics between the two world wars (Bologna, 1987), 173-180.
  3. R Marcolongo, Cesare Burali-Forti, Bollettino dell'Unione matematica italiana 10 (1931), 182-185.
  4. G H Moore and A Garciadiego, Burali-Forti's paradox: a reappraisal of its origins, Historia Mathematica 8 (3) (1981), 319-350.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.