المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Alicia Boole Stott  
  
127   01:53 مساءً   date: 17-3-2017
Author : H S M Coxeter
Book or Source : Regular polytopes
Page and Part : ...


Read More
Date: 30-3-2017 200
Date: 27-3-2017 166
Date: 19-3-2017 83

Born: 8 June 1860 in Cork, Ireland

Died: 17 December 1940 in England


Alicia Boole was the third daughter of George Boole. George Boole died when Alicia was only four years old and she was was brought up partly in England by her grandmother, partly in Cork by her great-uncle. When she was twelve years old she went to London where she joined her mother and sisters.

With no formal education she suprised everyone when, at the age of eighteen, she was introduced to a set of little wooden cubes by her brother-in-law Charles Howard Hinton. Alicia Boole experimented with the cubes and soon developed an amazing feel for four dimensional geometry. She introduced the word 'polytope' to describe a four dimensional convex solid.

MacHale, in [3], writes:-

She found that there were exactly six regular polytopes on four dimensions and that they are bounded by 5, 16 or 600 tetrahedra, 8 cubes, 24 octahedra or 120 dodecahedra. She then produced three-dimensional central cross-sections of all the six regular polytopes by purely Euclidean constructions and synthetic methods for the simple reason that she had never learned any analytic geometry. She made beautiful cardboard models of all these sections....

After taking up secretHelvetica work near Liverpool in 1889 she met and married Walter Stott in 1890. Stott learned of Schoute's work on central sections of the regular polytopes in 1895 and Alicia Stott sent him photographs of her cardboard models. Schoute came to England and worked with Alicia Stott, persuading her to publish her results which she did in two papers published in Amsterdam in 1900 and 1910.

The University of Groningen honoured her by inviting her to attend the tercentenary celebrations of the university and awarding her an honorary doctorate in 1914.

In 1930 she was introduced to Coxeter and they worked together on various problems. Alicia Stott made two further important discoveries relating to constructions for polyhedra related to the golden section. Coxeter described his time doing joint work with her saying:-

The strength and simplicity of her character combined with the diversity of her interests to make her an inspiring friend.


 

Books:

  1. H S M Coxeter, Regular polytopes (London, 1948).

Articles:

  1. L S Grinstein and P J Campbell (eds.), Women of Mathematics (Westport, Conn., 1987), 220-224.
  2. D McHale, George Boole : his life and work (Dublin, 1985), 260-263.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.