المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

أبيغ ريتشارد
12-10-2015
الميتوكوندريا Mitochondria
1-12-2019
معنى كلمة سقر‌
18-11-2015
التنظيم الحديث لحجية المحرر الإلكتروني في الإثبات
27-8-2020
Mertens Conjecture
5-8-2020
استعمالات اللدائن الحيوية
8-10-2016

THE PONTRYAGIN MAXIMUM PRINCIPLE-REVIEW OF LAGRANGE MULTIPLIERS.  
  
345   02:03 مساءاً   date: 9-10-2016
Author : Lawrence C. Evans
Book or Source : An Introduction to Mathematical Optimal Control Theory
Page and Part : 45-47

CONSTRAINTS AND LAGRANGEMULTIPLIERS.What first strikes us about general optimal control problems is the occurence of many constraints,  most notably that the dynamics be governed by the differential equation

This is in contrast to standard calculus of variations problems, where we could take any curve x(.) as a candidate for a minimizer.

Now it is a general principle of variational and optimization theory that “constraints create Lagrange multipliers” and furthermore that these Lagrange multipliers often “contain valuable information”. This section provides a quick review of the standard method of Lagrange multipliers in solving multivariable constrained optimization problems.

UNCONSTRAINED OPTIMIZATION. Suppose first that we wish to find a maximum point for a given smooth function f : Rn → R. In this case there is no constraint, and therefore if f(x) = maxxRn f(x), then x is a critical point of f:

                                          ∇f(x) = 0.

CONSTRAINED OPTIMIZATION. We modify the problem above by introducing the region

                             R := {x ∈ Rn | g(x) ≤ 0},

determined by some given function g : Rn → R. Suppose x ∈ R and f(x) = maxxR f(x). We would like a characterization of x in terms of the gradients of f and g.

Case 1: x lies in the interior of R. Then the constraint is inactive, and so

                   (1.1)                     ∇f(x ) = 0.

Case 2: x lies on ∂R. We look at the direction of the vector ∇f(x). A geometric picture like Figure 1 is impossible; for if it were so, then f(y) would be greater that f(x) for some other point y ∈ ∂R. So it must be ∇f(x) is perpendicular to ∂R at x, as shown in Figure 2.

Since ∇g is perpendicular to ∂R = {g = 0}, it follows that ∇f(x∗) is parallel to ∇g(x). Therefore

(1.2)                       ∇f(x) = λ∇g(x)

for some real number λ, called a Lagrange multiplier.

CRITIQUE. The foregoing argument is in fact incomplete, since we implicitly assumed that ∇g(x) = 0, in which case the Implicit Function Theorem implies that the set {g = 0} is an (n − 1)-dimensional surface near x (as illustrated).

If instead ∇g(x) = 0, the set {g = 0} need not have this simple form near x; and the reasoning discussed as Case 2 above is not complete.

The correct statement is this:

(1.3)

If μ= 0, we can divide by μ and convert to the formulation (1.2). And if ∇g(x) = 0,  we can take λ = 1, μ = 0, making assertion (1.3) correct (if not particularly useful).

References

[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.

[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.

[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.

[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.

[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.

[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.

[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.

[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.

[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).

[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.

[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.

[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.

[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.

[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.

[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.

[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.

[T] William J. Terrell, Some fundamental control theory I: Controllability, observability,  and duality, American Math Monthly 106 (1999), 705–719.

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.