المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

اللفحة النارية على الكمثري وطرق مكافحتها
5-7-2017
التوكل على الله
29-6-2017
الدليل العقلي
11-9-2016
سلام بن سهم
31-10-2017
The fricatives of English
2024-10-15
مواقع الإنترنت في دول العالم
17-8-2022

Claude Mylon  
  
1141   02:04 صباحاً   date: 18-1-2016
Author : P Costabel
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 25-1-2016 2509
Date: 24-1-2016 1167
Date: 19-1-2016 1304

Born: 1618 in Paris, France
Died: 1660 in Paris, France

 

Claude Mylon's father, Benoist Mylon, was a counsellor to Louis XIII and Controller-General of Finance. Claude was his parent's third son and he was brought up in a well-off family. He made the law his profession and Costabel writes [1] that he:-

... was admitted to the bar as an advocate before Parlement in 1641, even though he lacked two years of being twenty-five, the legal age of majority.

Mylon is important in the history of mathematics, not for his own achievements, but for his role in the Académie Parisienne, the group of scholars which was a continuation of the group formed in Paris by Mersenne, which was to form the foundation on which the Paris Academy of Sciences was formed. Mylon joined Mersenne's mathematical circle in around 1645 when he began to take careful notes of mathematical discussions in the group. At this time Mersenne was still in control of the group but on Mersenne's death in 1648 Le Pailleur took over the role of director of the Académie Parisienne. Mylon took on the role of secretary of the academy.

After the death of Le Pailleur in 1654, Mylon had access to all the correspondence between members of the Académie Parisienne and the numerous scientist with whom they had corresponded. At this stage Mylon carried on the important task of making the discoveries of mathematicians available to other mathematicians. He sent information on Fermat's and Frenicle de Bessy's number theory problems to Holland. Fermat had asked for a cube n such that the sum of the divisors of n is a square, and a square n such that the sum of the divisors of n is a cube. Frenicle de Bessy had asked for an integer n such that the sum of the divisors of n is 5n and the sum of the divisors of 5n is 25n. Similarly he asked for an integer n such that the sum of the divisors of n is 7n and the sum of the divisors of 7n is 49n.

Mylon also corresponded with van Schooten about the problems on games of chance, in particular the dice and points problems, that Fermat and Pascal were considering. The dice problem asks how many times one must throw a pair of dice before one expects a double six, while the problem of points asks how to divide the stakes if a game of dice is incomplete. Mylon maintained contact with Pascal after he gave up his mathematical studies and corresponded with Roberval.

Mylon's attempts to contribute to mathematics were much less successful than he was as a communicator of the results of others. He attempted to find the area enclosed by the curve known as the Pearls of Sluze. He also attempted to prove the result found by Wren concerning the length of the arc of the cycloid. As Costabel writes [1]:-


 

  1. P Costabel, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903099.html

Articles:

  1. J Mesnard, Sur le chemin de l'Académie des sciences : le cercle du mathématicien Claude Mylon (1654--1660), Rev. Histoire Sci. 44 (2) (1991), 241-251.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.