Read More
Date: 3-4-2022
1731
Date: 26-4-2022
1423
Date: 5-4-2022
1332
|
Given a graph , the arboricity is the minimum number of edge-disjoint acyclic subgraphs (i.e., spanning forests) whose union is .
An acyclic graph therefore has .
It appears that a regular graph of vertex degree has arboricity
(1) |
Let be a nonempty graph on vertices and edges and let be the maximum number of edges in any subgraph of having vertices. Then
(2) |
(Nash-Williams 1961; Harary 1994, p. 90).
The arboricity of a planar graph is at most 3 (Harary 1994, p. 124, Problem 11.22).
The arboricity of the complete graph is given by
(3) |
and of the complete bipartite graph by
(4) |
(Harary 1994, p. 91), where is the ceiling function.
Harary, F. "Covering and Packing in Graphs, I." Ann. New York Acad. Sci. 175, 198-205, 1970.
Harary, F. "Arboricity." In Graph Theory. Reading, MA: Addison-Wesley, pp. 90-92, 1994.
Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 225, 1973.
Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.
Nash-Williams, C. St. J. A. "Edge-Disjoint Spanning Trees of Finite Graphs." J. London Math. Soc. 36, 455-450, 1961.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|