المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
نظرية الغبار البركاني والغبار الذي يسببه الإنسان Volcanic and Human Dust
2024-11-24
نظرية البقع الشمسية Sun Spots
2024-11-24
المراقبة
2024-11-24
المشارطة
2024-11-24
الحديث المرسل والمنقطع والمعضل.
2024-11-24
اتّصال السند.
2024-11-24

حكم من عجز عن هدي التحلّل‌ وثمنه.
14-4-2016
عزل ثنائي اوكسيد - السيلكون
13-10-2021
articulatory setting
2023-05-31
Global synopsis: phonetic and phonological variation in English world-wide
2024-07-03
مقال تحليلي
30-5-2020
Cardinal Number
26-12-2021

Axiom of Extensionality  
  
1439   08:06 مساءً   date: 27-12-2021
Author : Devlin, K
Book or Source : The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd ed. New York: Springer-Verlag, 1993.
Page and Part : ...


Read More
Date: 30-12-2021 1076
Date: 31-12-2021 1193
Date: 16-1-2022 1155

Axiom of Extensionality

The axiom of Zermelo-Fraenkel set theory which asserts that sets formed by the same elements are equal,

  forall x(x in a=x in b)=>a=b.

Note that some texts (e.g., Devlin 1993), use a bidirectional equivalent = preceding "a=b," while others (e.g., Enderton 1977, Itô 1986), use the one-way implies =>. However, one-way implication suffices.

Using the notation a subset b (a is a subset of b) for (x in a)=>(x in b), the axiom can be written concisely as

 a subset b ^ b subset a=>a=b,

where  ^  denotes logical AND.


REFERENCES:

Devlin, K. The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd ed. New York: Springer-Verlag, 1993.

Enderton, H. B. Elements of Set Theory. New York: Academic Press, 1977.

Itô, K. (Ed.). "Zermelo-Fraenkel Set Theory." §33B in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, pp. 147-148, 1986.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.