Read More
Date: 8-6-2021
2844
Date: 9-6-2021
1968
Date: 15-6-2021
1488
|
An -bridge knot is a knot with bridge number . The set of 2-bridge knots is identical to the set of rational knots. If is a 2-bridge knot, then the BLM/Ho polynomial and Jones polynomial satisfy
where (Kanenobu and Sumi 1993). Kanenobu and Sumi also give a table containing the number of distinct 2-bridge knots of crossings for to 22, both not counting and counting mirror images as distinct.
3 | 0 | 0 |
4 | 0 | 0 |
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | 45 | 85 |
11 | 91 | 182 |
12 | 176 | 341 |
13 | 352 | 704 |
14 | 693 | 1365 |
15 | 1387 | 2774 |
16 | 2752 | 5461 |
17 | 5504 | 11008 |
18 | 10965 | 21845 |
19 | 21931 | 43862 |
20 | 43776 | 87381 |
21 | 87552 | 175104 |
22 | 174933 | 349525 |
REFERENCES:
Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Links through 20 Crossings." Adv. Studies Pure Math. 20, 125-145, 1992.
Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Knots through 22-Crossings." Math. Comput. 60, 771-778 and S17-S28, 1993.
Schubert, H. "Knotten mit zwei Brücken." Math. Z. 65, 133-170, 1956.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|