المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

Organometallic Reagents as Bases
28-7-2019
الشيخ علي أصغر بن الشيخ محمد يوسف القزويني
29-8-2020
عقيدة الشيعة الإمامية الإثنى عشرية في النبوة
9-5-2018
ما يزيد في الرزق ويدفع الفقر ـ بحث روائي
19-1-2016
Schönflies Theorem
17-5-2021
بكر بن أحمد العَصَريّ
1-9-2016

Vassiliev Invariant  
  
3579   04:25 مساءً   date: 15-6-2021
Author : Birman, J. S.
Book or Source : "New Points of View in Knot Theory." Bull. Amer. Math. Soc. 28
Page and Part : ...


Read More
Date: 11-8-2021 1649
Date: 28-7-2021 1068
Date: 24-5-2021 2342

Vassiliev Invariant

Vassiliev invariants, discovered around 1989, provided a radically new way of looking at knots. The notion of finite type (a.k.a. Vassiliev) knot invariants was independently invented by V. Vassiliev and M. Goussarov around 1989. Vassiliev's approach is based on the study of discriminants in the (infinite-dimensional) spaces of smooth maps from one manifold into another. By definition, the discriminant consists of all maps with singularities.

For example, consider the space of all smooth maps from the circle into three-space M={f:S^1->R^3}. If f is an embedding (i.e., has no singular points), then it represents a knot. The complement of the set of all knots is the discriminant Sigma subset M. It consists of all smooth maps from S^1 into R^3 that have singularities, either local, where , or nonlocal, where f is not injective. Two knots are equivalent iff they can be joined by a path in the space M that does not intersect the discriminant. Therefore, knot types are in one-to-one correspondence with the connected components of the complement MSigma, and knot invariants with values in an Abelian group G are nothing but cohomology classes from H^0(MSigma,G). The filtration of Sigma by subspaces corresponding to singular knots with a given number of ordinary double points gives rise to a spectral sequence, which contains, in particular, the spaces of finite type invariants.

Birman and Lin (1993) have contributed significantly to the simplification of the Vassiliev's original techniques. In particular, they explained the relation between Jones polynomials and finite type invariants (Peterson 1992, Birman and Lin 1993, Bar-Natan 1995) and emphasized the role of the algebra of chord diagrams. In fact, substituting the power series for e^x as the variable in the Jones polynomial yields a power series whose coefficients are Vassiliev invariants (Birman and Lin 1993). Kontsevich (1993) proved the first difficult theorem about Vassiliev invariants with the help of the Kontsevich integral. Bar-Natan undertook a thorough study of Vassiliev invariants; in particular, he showed the importance of the algebra of Feynman diagrams and diagrams with uni- and tri-valent vertices (Bar-Natan 1995). Bar-Natan (1995) remains the most authoritative source on the subject.

Expressed in simple terms, Vassiliev's fundamental idea is to study the prolongation of knot invariants to singular knots--immersions f:S^1->R^3 having a finite number of ordinary double points. Let X_n denote the set of equivalence classes of singular knots with n double points and no other singularities. The following definition is based on a recursion which allows to extend a knot invariant from X_0 to X_1, then to X_2, etc., and thus finally to the whole of X= union _nX_n. Given a knot invariant v:X_0->Q, its Vassiliev prolongation v^^:X->Q is defined as by the rules

1. , and

2. Vassiliev's skein relation, illustrated below.

VassilievInvariantWrithe

The right-hand side of Vassiliev's skein relation refers to the two resolutions of the double point--positive and negative. A crucial observation is that each of them is well-defined (does not depend on the plane projection used to express this relation). A knot invariant v is called a Vassiliev invariant of order <=n if its prolongation  vanishes on all knots with more than n double points. For example, the simplest nontrivial Vassiliev invariant v_2 has the following explicit description. Let D be an arbitrary knot diagram of the given knot K and * an arbitrary distinguished point on D, different from all crossings. Then

 v_2(K)=sum_(i j i j; UOOU)epsilon_iepsilon_j,

where the summation spreads over all pairs of crossing points i,j such that (1) during one complete turn of the diagram in the positive direction starting from point * the points i and j are encountered in the order i,j,i,j, and (2) the four corresponding passages through these crossing points are underpass, overpass, overpass, and underpass, respectively. The numbers epsilon_iepsilon_j stand for the local writhe at points i and j, defined according to the above illustration.

It turns out that the nth coefficient of the Conway polynomial is a Vassiliev invariant of order n and, in particular, the second coefficient coincides with v_2.

Vassiliev invariants are at least as strong as all known polynomial knot invariants: Alexander, Jones, Kauffman, and HOMFLY polynomials. This means that if two knots K_1 and K_2 can be distinguished by such a polynomial, then there is a Vassiliev invariant that takes different values for K_1 and K_2.

The set of all Q-valued Vassiliev invariants V= union _nV_n forms a vector space over the rationals, with the increasing filtration Q=V_0 subset V_1 subset V_2 subset .... The associated graded space  direct sum _nV_n/V_(n-1) has a structure of a Hopf algebra and can be interpreted as the algebra of chord diagrams.

The numbers of independent Vassiliev invariants of a given degree n (i.e., the dimension of V_n) are known for n=0 to 12 (Kneissler 1997) and are summarized in following table (A007473).

n 0 1 2 3 4 5 6 7 8 9 10 11 12
dimV_n 1 1 2 3 6 10 19 33 60 104 184 316 548

The totality of all Vassiliev invariants is equivalent to one universal Vassiliev invariant defined through the Kontsevich integral.

Two of the most important problems about Vassiliev invariants were raised in 1990 and remain unanswered today.

1. Is it true that Vassiliev invariants distinguish knots? In other words, given two nonequivalent knots K_1 and K_2, is it always possible to indicate a finite type invariant v such that v(K_1)!=v(K_2)?

2. Is it true that Vassiliev invariants can detect knot orientation? More specifically, is there a knot K and a finite type invariant v such that v(K)!=v(K^_), where K^_ differs from K by a change of parameterization that reverses the orientation?


REFERENCES:

Bar-Natan, D. "Bibliography of Vassiliev Invariants." https://www.ma.huji.ac.il/~drorbn/VasBib/VasBib.html.

Bar-Natan, D. "On the Vassiliev Knot Invariants." Topology 34, 423-472, 1995.

Birman, J. S. "New Points of View in Knot Theory." Bull. Amer. Math. Soc. 28, 253-287, 1993.

Birman, J. S. and Lin, X.-S. "Knot Polynomials and Vassiliev's Invariants." Invent. Math. 111, 225-270, 1993.

Duzhin, S. V. "Vassiliev Invariants and Combinatorial Structures." Lectures delivered at Graduate School of Mathematical Sciences, University of Tokyo, April-July 1999. https://www.pdmi.ras.ru/~duzhin/Vics/.

Goussarov, M. "On n-Equivalence of Knots and Invariants of Finite Degree." In Topology of Manifolds and Varieties (Ed. O. Viro). Providence, RI: Amer. Math. Soc., pp. 173-192, 1994.

Kneissler, J. "The Number of Primitive Vassiliev Invariants up to Degree Twelve." 1997. https://www.math.uni-bonn.de/people/jk/papers/pvi12.pdf.gz.

Kontsevich, M. "Vassiliev's Knot Invariants." Adv. Soviet Math. 16, Part 2, pp. 137-150, 1993.

Peterson, I. "Knotty Views: Tying Together Different Ways of Looking at Knots." Sci. News 141, 186-187, 1992.

PHelveticaov, V. V. and Sossinsky, A. B. Knots, Links, Braids and 3-Manifolds: An Introduction to the New Invariants in Low-Dimensional Topology. Providence, RI: Amer. Math. Soc., 1996.

Sloane, N. J. A. Sequence A007473/M0765 in "The On-Line Encyclopedia of Integer Sequences."

Stoimenow, A. "Degree-3 Vassiliev Invariants." https://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/vas3.html.

Vassiliev, V. A. "Cohomology of Knot Spaces." In Theory of Singularities and Its Applications (Ed. V. I. Arnold). Providence, RI: Amer. Math. Soc., pp. 23-69, 1990.

Vassiliev, V. A. Complements of Discriminants of Smooth Maps: Topology and Applications. Providence, RI: Amer. Math. Soc., 1992.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.