المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

حجاب الكفار غير مانع من مشاهدتهم للعذاب
2023-10-08
المحفوظ عن الصادق(عليه السلام)في العلوم
17-04-2015
pro-constituent (n.)
2023-11-02
طيف إلكتروني electronic spectrum
26-12-2018
القدوة
11-12-2018
Cardinal vowels 2–4 and 6–7
20-6-2022

Morgado Identity  
  
602   02:57 صباحاً   date: 7-12-2020
Author : Dujella, A.
Book or Source : "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." Portugaliae Math. 52
Page and Part : ...


Read More
Date: 2-3-2020 538
Date: 18-12-2020 822
Date: 27-11-2019 777

Morgado Identity

There are several results known as the Morgado identity. The first is

 F_nF_(n+1)F_(n+2)F_(n+4)F_(n+5)F_(n+6)+L_(n+3)^2=[F_(n+3)(2F_(n+2)F_(n+4)-F_(n+3)^2)]^2,

(1)

where F_n is a Fibonacci number and L_n is a Lucas number (Morgado 1987, Dujella 1995).

A second Morgado identity is satisfied by generalized Fibonacci numbers w_n,

 4w_nw_(n+1)w_(n+2)w_(n+4)w_(n+5)w_(n+6)+e^2q^(2n)(w_nU_4U_5-w_(n+1)U_2U_6-w_nU_1U_8)^2 
 =(w_(n+1)w_(n+2)w_(n+6)+w_nw_(n+4)w_(n+5))^2,

(2)

where

e = pab-qa^2-b^2

(3)

U_n = w_n(0,1;p,q)

(4)

(Morgado 1987, Dujella 1996).


REFERENCES:

Dujella, A. "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." Portugaliae Math. 52, 305-318, 1995.

Dujella, A. "Generalized Fibonacci Numbers and the Problem of Diophantus." Fib. Quart. 34, 164-175, 1996.

Morgado, J. "Note on Some Results of A. F. Horadam and A. G. Shannon Concerning a Catalan's Identity on Fibonacci Numbers." Portugaliae Math. 44, 243-252, 1987.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.