المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تخزين البطاطس
2024-11-28
العيوب الفسيولوجية التي تصيب البطاطس
2024-11-28
العوامل الجوية المناسبة لزراعة البطاطس
2024-11-28
السيادة القمية Apical Dominance في البطاطس
2024-11-28
مناخ المرتفعات Height Climate
2024-11-28
التربة المناسبة لزراعة البطاطس Solanum tuberosum
2024-11-28

محمد بن صدقة ابن الحسين
8-8-2016
Extraction of Zinc
10-12-2018
الافات والامراض التي تصيب الشوندر السكري (البنجر السكري)
6-3-2017
التطبيق لأشعة ((X في حالة البوليمرات
10-12-2017
القيمة الغذائية للجبن
25-1-2017
سقوط الكفّارة فيما عدا رمضان.
18-1-2016

q-Gamma Function  
  
1249   05:36 مساءً   date: 27-8-2019
Author : Gasper, G. and Rahman, M
Book or Source : Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.
Page and Part : ...


Read More
Date: 25-5-2019 2064
Date: 23-8-2019 1469
Date: 20-8-2018 1817

q-Gamma Function

q-analog of the gamma function defined by

 Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x),

(1)

where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek and Swarttouw 1998). The q-gamma function satisfies

 lim_(q->1^-)Gamma_q(x)=Gamma(x),

(2)

where Gamma(z) is the gamma function (Andrews 1986).

The q-gamma function is implemented in the Wolfram Language as QGamma[zq].

The q-gamma function satisfies the functional equation

 Gamma_q(z+1)=(1-q^z)/(1-q)Gamma_q(z)

(3)

with Gamma_q(1)=1 (Koekoek and Swarttouw 1998, p. 10), which simplifies to

 Gamma(z+1)=zGamma(z)

(4)

as q->1^-. A curious identity for the functional equation

 f(a-b)f(a-c)f(a-d)f(a-e)-f(b)f(c)f(d)f(e) 
 =q^bf(a)f(a-b-c)f(a-b-d)f(a-b-e),

(5)

where

 b+c+d+e=2a

(6)

is given by

 f(alpha)={sin(kalpha)   for q=1; 1/(Gamma_q(alpha)Gamma_q(1-alpha))   for 0<q<1,

(7)

for any k.


REFERENCES:

Andrews, G. E. "W. Gosper's Proof that lim_(q->1^-)Gamma_q(x)=Gamma(x)." Appendix A in q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 11 and 109, 1986.

Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.

Koekoek, R. and Swarttouw, R. F. "The q-Gamma Function and the q-Binomial Coefficient." §0.3 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 10-11, 1998.

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.

Wenchang, C. Problem 10226 and Solution. "A q-Trigonometric Identity." Amer. Math. Monthly 103, 175-177, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.