المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

لذة قراءة القرآن
25-8-2017
حرمة الصدقة على أهل البيت
25-11-2014
Ultratrace Minerals : Molybdenum
19-12-2021
الميزان الصرفي
17-02-2015
خصائص السكريات السداسية
8-6-2017
نقص الإثبات ومذهب الذرائعية ومذهب الواقعية
2024-07-23

Clausen,s Integral  
  
2380   06:39 مساءً   date: 29-7-2019
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 25-5-2019 1739
Date: 13-8-2018 1746
Date: 15-5-2018 1954

Clausen's Integral

ClausensIntegralClausensIntegralReImClausensIntegralContours

Clausen's integral, sometimes called the log sine integral (Borwein and Bailey 2003, p. 88) is the n=2 case of the S_2 Clausen function

Cl_2(theta) = -int_0^thetaln[2sin(1/2t)]dt

(1)

= i(1/6pi^2-1/4x^2)+x[ln(1-e^(ix))-ln2]-iLi_2(e^(ix))-xln[sin(1/2x)],

(2)

where Li_2(x) is a dilogarithm.

Clausen's integral has the special value

 Cl_2(1/2pi)=K,

(3)

where K is Catalan's constant (Borwein and Bailey 2003, p. 89). Other identities include

 4Cl_2(1/3pi)=2Cl_2(2alpha)+Cl_2(pi+2alpha)-3Cl_2(5/3pi+2alpha)

(4)

where alpha=tan^(-1)(sqrt(3)/9),

 6K=2Cl_2(2beta)-3Cl_2(2beta-1/2pi)+Cl_2(2beta+1/2pi)

(5)

where beta=tan^(-1)(1/3), and

 7/4sqrt(7)L_(-7)(2)=3Cl_2(gamma)-3Cl_2(2gamma)+Cl_2(3gamma)

(6)

where L_n(s) is a Dirichlet L-series and gamma=2tan^(-1)(sqrt(7)) (Borwein and Bailey 2003, pp. 89-90).

BBP-type formulas include

Cl_2(1/3pi) = sqrt(3)sum_(k=0)^(infty)[1/((6k+1)^2)+1/((6k+2)^2)-1/((6k+4)^2)-1/((6k+5)^2)]

(7)

= (sqrt(3))/9sum_(k=0)^(infty)((-1)^k)/(27^k)[(18)/((6k+1)^2)-(18)/((6k+2)^2)-(24)/((6k+3)^2)-6/((6k+4)^2)+2/((6k+5)^2)]

(8)

(Bailey 2000, Borwein and Bailey 2003, pp. 128-129).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 1005-1006, 1972.

Ashour, A. and Sabri, A. "Tabulation of the Function psi(theta)=sum_(n=1)^(infty)(sin(ntheta))/(n^2)." Math. Tables Aids Comp. 10, 54 and 57-65, 1956.

Bailey, D. H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 89-90, 2003.

Clausen, R. "Über die Zerlegung reeller gebrochener Funktionen." J. reine angew. Math. 8, 298-300, 1832.

Lewin, L. "Clausen's Integral." Ch. 4 in Dilogarithms and Associated Functions. London: Macdonald, pp. 91-105, 1958.

Lewin, L. Polylogarithms and Associated Functions. New York: North-Holland, 1981.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.