Read More
Date: 19-9-2018
1423
Date: 3-9-2019
1720
Date: 10-8-2019
1522
|
The quasiperiodic function defined by
(1) |
where is the Weierstrass zeta function and
(2) |
(As in the case of other Weierstrass elliptic functions, the invariants and are frequently suppressed for compactness.) Then
(3) |
where the term with is omitted from the product and .
Amazingly, , where is the Weierstrass sigma function with half-periods and , has a closed form in terms of , , and . This constant is known as the Weierstrass constant.
In addition, satisfies
(4) |
|||
(5) |
and
(6) |
for , 2, 3. The function is implemented in the Wolfram Language as WeierstrassSigma[u, g2, g3].
can be expressed in terms of Jacobi theta functions using the expression
(7) |
where , and
(8) |
|||
(9) |
There is a beautiful series expansion for , given by the double series
(10) |
where , for either subscript negative, and other values are gives by the recurrence relation
(11) |
(Abramowitz and Stegun 1972, pp. 635-636). The following table gives the values of the coefficients for small and .
1 | -3 | -54 | 14904 | |
-1 | -18 | 4968 | 502200 | |
-9 | 513 | 257580 | 162100440 | |
69 | 33588 | 20019960 | -9465715080 | |
321 | 2808945 | -376375410 | -4582619446320 | |
160839 | -41843142 | -210469286736 | -1028311276281264 |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Weierstrass Elliptic and Related Functions." Ch. 18 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 627-671, 1972.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
Knopp, K. "Example: Weierstrass's -Function." §2d in Theory of Functions Parts I and II, Two Volumes Bound as One, Part II.New York: Dover, pp. 27-30, 1996.
Tölke, F. "Spezielle Weierstraßsche Sigma-Funktionen." Ch. 9 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 164-180, 1967.
Whittaker, E. T. and Watson, G. N. "The Function ." §20.42 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 447-448, 450-452, and 458-461, 1990.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|