المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تشفير المعلومات المنقولة والمحفوظة وتسجيل الأثر الإلكتروني
16-8-2022
إلكترود "كالومل" Calomel electrode
4-3-2018
Hydrogen Sulfide H2S
11-11-2018
Adjoint
30-5-2018
مهارة حل المشكلات واتخاذ القرار
8-9-2020
آلية رفع الدعوى الإلكترونية وبياناتها
15-8-2021

Complex Differentiable  
  
422   01:13 مساءً   date: 18-10-2018
Author : Shilov, G. E
Book or Source : Elementary Real and Complex Analysis. New York: Dover
Page and Part : p. 379


Read More
Date: 28-11-2018 398
Date: 18-12-2018 544
Date: 28-10-2018 452

Complex Differentiable

Let z=x+iy and f(z)=u(x,y)+iv(x,y) on some region G containing the point z_0. If f(z) satisfies the Cauchy-Riemann equations and has continuous first partial derivatives in the neighborhood of z_0, then  exists and is given by

and the function is said to be complex differentiable (or, equivalently, analytic or holomorphic).

A function f:C->C can be thought of as a map from the plane to the plane, f:R^2->R^2. Then f is complex differentiable iff its Jacobian is of the form

 [a -b; b a]

at every point. That is, its derivative is given by the multiplication of a complex number a+bi. For instance, the function f(z)=z^_, where z^_ is the complex conjugate, is not complex differentiable.


REFERENCES:

Shilov, G. E. Elementary Real and Complex Analysis. New York: Dover, p. 379, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.