المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

مفهوم الكراهية
26-1-2016
الالكانات الحلقية وتسميتها
2023-08-12
تفسير الآية (52-54) من سورة ال عمران
28-2-2021
وكالة تاس: TASS
2-5-2021
التبني في ظل الشرائع السماوية
22-4-2019
الفرق بين التجارة الداخلية والتجارة الخارجية- السياسات الحكومية
14/12/2022

Analytic Continuation  
  
1397   03:06 مساءً   date: 14-10-2018
Author : Arfken, G.
Book or Source : Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
Page and Part : ...


Read More
Date: 27-11-2018 460
Date: 25-11-2018 556
Date: 1-11-2018 425

Analytic Continuation 

Analytic continuation (sometimes called simply "continuation") provides a way of extending the domain over which a complex function is defined. The most common application is to a complex analytic function determined near a point z_0 by a power series

 f(z)=sum_(k=0)^inftya_k(z-z_0)^k.

(1)

Such a power series expansion is in general valid only within its radius of convergence. However, under fortunate circumstances (that are very fortunately also rather common!), the function f will have a power series expansion that is valid within a larger-than-expected radius of convergence, and this power series can be used to define the function outside its original domain of definition. This allows, for example, the natural extension of the definition trigonometric, exponential, logarithmic, power, and hyperbolic functions from the real line R to the entire complex plane C. Similarly, analytic continuation can be used to extend the values of an analytic function across a branch cut in the complex plane.

Let f_1 and f_2 be analytic functions on domains Omega_1 and Omega_2, respectively, and suppose that the intersection Omega_1 intersection Omega_2 is not empty and that f_1=f_2 on Omega_1 intersection Omega_2. Then f_2 is called an analytic continuation of f_1 to Omega_2, and vice versa (Flanigan 1983, p. 234). Moreover, if it exists, the analytic continuation of f_1 to Omega_2 is unique.

This uniqueness of analytic continuation is a rather amazing and extremely powerful statement. It says in effect that knowing the value of a complex function in some finite complex domain uniquely determines the value of the function at every other point.

By means of analytic continuation, starting from a representation of a function by any one power series, any number of other power series can be found which together define the value of the function at all points of the domain. Furthermore, any point can be reached from a point without passing through a singularity of the function, and the aggregate of all the power series thus obtained constitutes the analytic expression of the function (Whittaker and Watson 1990, p. 97).

Analytic continuation can lead to some interesting phenomenon such as multivalued functions. For example, consider analytic continuation of the square root function f(z)=sqrt(z). Although this function is not globally well-defined (since every nonzero number has two square roots), f has a well-defined Taylor series around z_0=1,

f(z) =

(2)

= 1+1/2(z-1)-1/8(z-1)^2+1/(16)(z-1)^3-5/(128)(z-1)^4+...

(3)

which can be used to extend the domain over which f is defined. Note that when |z|=1, the power series for f has a radius of convergence of 1.

Analytic continuation

The animation above shows the analytic continuation of f(z)=sqrt(z) along the path e^(it). Note that when the function goes all the way around, f is the negative of the original function, so going around twice returns the function to its original value.

In the animation, the domain space (colored pink; left figures) is mapped to the image space (colored blue; right figures) by the square root function, and the light blue region indicates the negative square root. However, by continuing the function around the circle, the square root function takes values in what used to be the light blue region, so the roles of the blue and light blue region are reversed.

This can be interpreted as going from one branch of the multivalued square root function to the other. This illustrates that analytic continuation extends a function using the nearby values that provide the information on the power series.

It is possible for the function to never return to the same value. For example, f(z)=lnz increases by 2pii every time it is continued around zero. The natural domain of a function is the maximal chain of domains on which a function can be analytically continued to a single-valued function. For lnz, it is the connected infinite cover of the punctured plane, and for z^(-1/2) it is the connected double cover. If there is a boundary across which the function cannot be extended, then is called the natural boundary. For instance, there exists a meromorphic function f in the unit disk where every point on the unit circle is a limit point of the set of poles. Then the circle is a natural boundary for f.


REFERENCES:

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 378-380, 1985.

Davis, P. J. and Pollak, H. "On the Analytic Continuation of Mapping Functions." Trans. Amer. Math. Soc. 87, 198-225, 1958.

Flanigan, F. J. Complex Variables: Harmonic and Analytic Functions. New York: Dover, 1983.

Havil, J. "Analytic Continuation." §16.3 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 91-193, 2003.

Knopp, K. "Analytic Continuation and Complete Definition of Analytic Functions." Ch. 8 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 83-111, 1996.

Krantz, S. G. "Uniqueness of Analytic Continuation" and "Analytic Continuation." §3.2.3 and Ch. 10 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 38-39 and 123-141, 1999.

Levinson, N. and Raymond, R. Complex Variables. New York: McGraw-Hill, pp. 398-402, 1970.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 389-390 and 392-398, 1953.

Needham, T. "Analytic Continuation." §5.XI in Visual Complex Analysis. New York: Clarendon Press, pp. 247-257, 2000.

Rudin, W. Real and Complex Analysis. New York: McGraw-Hill, pp. 319-327, 1987.

Whittaker, E. T. and Watson, G. N. "The Process of Continuation." §5.5 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 96-98, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.