Read More
Date: 18-8-2018
1770
Date: 21-5-2019
3271
Date: 22-4-2019
1634
|
If is continuous on a closed interval , and is any number between and inclusive, then there is at least one number in the closed interval such that .
The theorem is proven by observing that is connected because the image of a connected set under a continuous function is connected, where denotes the image of the interval under the function . Since is between and , it must be in this connected set.
The intermediate value theorem (or rather, the space case with , corresponding to Bolzano's theorem) was first proved by Bolzano (1817). While Bolzano's used techniques which were considered especially rigorous for his time, they are regarded as nonrigorous in modern times (Grabiner 1983).
REFERENCES:
Anton, H. Calculus with Analytic Geometry, 2nd ed. New York: Wiley, p. 189, 1984.
Apostol, T. M. "The Intermediate-Value Theorem for Continuous Functions." §3.10 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 144-145, 1967.
Bolzano, B. "Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege." Prague, 1817. English translation in Russ, S. B. "A Translation of Bolzano's Paper on the Intermediate Value Theorem." Hist. Math. 7, 156-185, 1980.
Cauchy, A. Cours d'analyse. Reprinted in Oeuvres, series 2, vol. 3, pp. 378-380. English translation in Grabiner, J. V. The Origins of Cauchy's Rigorous Calculus. Cambridge, MA: MIT Press, pp. 167-168, 1981.
Grabiner, J. V. "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus." Amer. Math. Monthly 90, 185-194, 1983.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|