المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19


Indefinite Integral  
  
2880   08:04 مساءً   date: 17-9-2018
Author : Boros, G. and Moll, V.
Book or Source : Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.
Page and Part : ...


Read More
Date: 26-7-2019 1475
Date: 25-4-2019 4181
Date: 19-5-2018 1965

Indefinite Integral

 

An integral of the form

 intf(z)dz,

(1)

i.e., without upper and lower limits, also called an antiderivative. The first fundamental theorem of calculus allows definite integralsto be computed in terms of indefinite integrals. In particular, this theorem states that if F is the indefinite integral for a complex function f(z), then

 int_a^bf(z)dz=F(b)-F(a).

(2)

This result, while taught early in elementary calculus courses, is actually a very deep result connecting the purely algebraic indefinite integral and the purely analytic (or geometric) definite integral. Indefinite integration is implemented in the Wolfram Language as Integrate[fz].

Since the derivative of a constant is zero, any constant may be added to an antiderivative and will still correspond to the same integral. Another way of stating this is that the antiderivative is a nonunique inverse of the derivative. For this reason, indefinite integrals are often written in the form

 intf(z)dz=F(z)+C,

(3)

where C is an arbitrary constant known as the constant of integration. The Wolfram Language returns indefinite integrals without explicit constants of integration. This means that, depending on the form used for the integrand, antiderivatives F_1 and F_2 can be obtained that differ by a constant (or, more generally, a piecewise constant function). It also means that Integrate[f+gz] may differ from Integrate[fz] + Integrate[gz] by an arbitrary (piecewise) constant.

Note that indefinite integrals defined algebraically deal with complex quantities. However, many elementary calculus textbooks write formulas such as

 int(dx)/x=ln|x|

(4)

(where the notation x is used to indicate that x is assumed to be a real number) instead of the complex variable version

 int(dz)/z=lnz,

(5)

where z is generically a complex number (but also holds for real z). Defining a sort of "real-only" indefinite integral is perhaps done so that students can apply the first fundamental theorem of calculus using a Riemann integral and get correct answers while completely avoiding the use of complex analysis, multivalued functions, etc. (Although it should be noted that the first fundamental theorem of calculus only applies if the integrand is continuous on the interval of integration, so the additional stipulation must be made that int_a^bdx/x=[ln|x|]_b^a can be applied only if the interval [a,b] does not contain 0.)

However, this work (and the Wolfram Language) eschew the "real-only" definition, since inclusion of the absolute value means that the indefinite integral is no longer valid for a generic complex variable z (the presence of the |z| means the Cauchy-Riemann equations no longer can hold), and also violates the purely algebraic definition of indefinite integrals. Since physical problem involve definite integrals, it is much more sensible to stick with the usual complex/algebraic definitions of indefinite integration. In other words, while the Riemann integral

 int_(-2)^(-1)(dx)/x=[ln|x|]_(-2)^(-1)=0-ln2=-ln2

(6)

gives the correct answer (and avoids complex quantities along the way), so does the complex integral

 int_(-2)^(-1)(dz)/z=[lnz]_(-2)^(-1)=(ipi)-(ipi+ln2)=-ln2,

(7)

whereas the latter form preserves the benefits of genericness and at the same time prepares students for the extremely powerful tool of complex analysis which they should know about and will probably be learning about shortly in any case.

Liouville showed that the integrals

 inte^(-x^2)dx,  int(e^(-x))/xdx,  int(sinx)/xdx,   
 int(cosx)/xdx,  int(dx)/(lnx)

(8)

cannot be expressed in terms of a finite number of elementary functions. These give rise to the functions

erf(x) = 2/(sqrt(pi))inte^(-x^2)dx

(9)

Ei(x) = int(e^x)/xdx

(10)

Si(x) = int(sinx)/xdx

(11)

Ci(x) = int(cosx)/xdx

(12)

li(x) = int(dx)/(lnx)

(13)

(Havil 2003, p. 105), which are called erf, the exponential integral, sine integral, cosine integral, and logarithmic integral, respectively. The integral of any function of the form R(x)e^x, where R(x) is a rational function, reduces to elementary integrals and the function Ei(x) (Havil 2003, p. 106).

Other irreducibles include

 intx^xdx,  intx^(-x)dx,  intsqrt(sinx)dx,  intsqrt(cosx)dx,   
 intsqrt(lnx)dx,  inte^(e^x)dx,  intlnlnxdx,

(14)

(cf. Marchisotto and Zakeri 1994), the last few of which can be written in closed form as

intsqrt(sinx)dx = -2E(1/4(pi-2x),sqrt(2))

(15)

intsqrt(cosx)dx = 2E(1/2x,sqrt(2))

(16)

intsqrt(lnx)dx = -1/2sqrt(pi)erfi(sqrt(lnx))+xsqrt(lnx)

(17)

inte^(e^x)dx = Ei(e^x)

(18)

intln(lnx)dx = xlnlnx-li(x),

(19)

where E(x,k) is an elliptic integral of the second kind, erfi(x) is the erfi function, and Ei(x) is the exponential integral.

Chebyshev proved that if UV, and W are rational numbers, then

 intx^U(A+Bx^V)^Wdx

(20)

is integrable in terms of elementary functions iff (U+1)/VW, or W+(U+1)/V is an integer (Ritt 1948, Shanks 1993).

Integration for general input is a tricky problem for symbolic mathematics software. In fact, many simple indefinite integrals, such as

 int[d/(dz)Li_2(zlnz)]dz 
=-int[((lnz+1)ln(1-zlnz))/(zlnz)]dz 
int[d/(dz)(1/2sqrt(pi)erf(az)erf(bz))]dz 
=int[be^(-b^2z^2)erf(az)+ae^(-a^2z^2)erf(bz)]dz,

(21)

where Li_2(z) is the dilogarithm, cannot be done by very sophisticated software systems, including even the Wolfram Language.

A selection of indefinite integrals are summarized below for power functions

intz^rdz = (z^(r+1))/(r+1)+C

(22)

int(dz)/z = lnz+C

(23)

inta^zdz = (a^z)/(lna)+C,

(24)

trigonometric functions

intsinzdz = -cosz+C

(25)

intcoszdz = sinz+C

(26)

inttanzdz = ln(secz)+C

(27)

intcsczdz = ln(cscz-cotz)+C

(28)

= ln[tan(1/2z)]+C

(29)

= 1/2ln((1-cosz)/(1+cosz))+C

(30)

intseczdz = ln(secz+tanz)+C

(31)

= ln[(cos(1/2z)+sin(1/2z))/(cos(1/2z)-sin(1/2z))]

(32)

= gd^(-1)(z)+C

(33)

intcotzdz = ln(sinz)+C,

(34)

combinations of trigonometric functions

intsin^2zdz = 1/2z-1/4sin(2z)+C

(35)

intcos^2zdz = 1/2z+1/4sin(2z)+C

(36)

inttan^2zdz = tanz-z+C

(37)

intsec^2zdz = tanz+C

(38)

intcsc^2zdz = -cotz+C

(39)

intcot^2zdz = -cotz-z+C

(40)

intsecztanzdz = secz+C,

(41)

inverse trigonometric functions

intcos^(-1)zdz = zcos^(-1)z-sqrt(1-z^2)+C

(42)

intsin^(-1)zdz = zsin^(-1)z+sqrt(1-z^2)+C

(43)

inttan^(-1)zdz = ztan^(-1)z-1/2ln(1+z^2)+C,

(44)

second-order rational functions and square roots

int(dz)/(sqrt(a^2-z^2)) = sin^(-1)(z/a)+C

(45)

int(dz)/(sqrt(a^2-z^2)) = -cos^(-1)(z/a)+C

(46)

int(dz)/(a^2+z^2) = 1/atan^(-1)(z/a)+C

(47)

int(dz)/(a^2+z^2) = -1/acot^(-1)(z/a)+C

(48)

int(dz)/(zsqrt(z^2-a^2)) = 1/asec^(-1)(z/a)+C

(49)

int(dz)/(zsqrt(z^2-a^2)) = -1/acsc^(-1)(z/a)+C,

(50)

Jacobi elliptic functions

intsn(u,k)du = k^(-1)ln[dn(u,k)-kcn(u,k)]+C

(51)

intcn(u,k)du = k^(-1)sin^(-1)[ksn(u,k)]+C

(52)

intdn(u,k)du = sin^(-1)sn(u,k)+C

(53)

= am(u,k)+C,

(54)

and the squares of Jacobi elliptic functions

 intsn^2(u,k)du=(u-E(u,k))/(k^2)+C.

(55)

Here, sinz is the sine; cosz is the cosine; tanz is the tangent; cscz is the cosecant; secz is the secant; cotz is the cotangent;cos^(-1)z is the inverse cosine; sin^(-1)z is the inverse sine; tan^(-1) is the inverse tangent; snucnu, and dnu are Jacobi elliptic functions; am(u,k) is the Jacobi amplitude; E(u) is a complete elliptic integral of the second kind; and gd(z) is the Gudermannian. a is assumed to be real and positive, and k is the modulus.

To derive (◇), let u=cosz, so du=-sinzdz and

inttanzdz = int(sinz)/(cosz)dz

(56)

= -int(du)/u

(57)

= -lnu+C

(58)

= -ln(cosz)+C

(59)

= ln(cosz)^(-1)+C

(60)

= ln(secz)+C.

(61)

To derive (◇), let u=cscz-cotz, so du=(csc^2z-csczcotz)dz and

intcsczdz = intcscz(cscz-cotz)/(cscz-cotz)dz

(62)

= int(csc^2z-cotzcscz)/(cscz-cotz)dz

(63)

= int(du)/u

(64)

= lnu+C

(65)

= ln(cscz-cotz)+C.

(66)

To derive (◇), let

 u=secz+tanz,

(67)

so

 du=(secztanz+sec^2z)dz

(68)

and

intseczdz = intsecz(secz+tanz)/(secz+tanz)dz

(69)

= int(sec^2z+secztanz)/(secz+tanz)dz

(70)

= int(du)/u=lnu+C

(71)

= ln(secz+tanz)+C.

(72)

To derive (◇), let u=sinz, so du=coszdz and

intcotzdz = int(cosz)/(sinz)dz

(73)

= int(du)/u

(74)

= lnu+C

(75)

= ln(sinz)+C.

(76)

 


REFERENCES:

Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Marchisotto, E. A. and Zakeri, G.-A. "An Invitation to Integration in Finite Terms." College Math. J. 25, 295-308, 1994.

Ritt, J. F. Integration in Finite Terms: Liouville's Theory of Elementary Methods. New York: Columbia University Press, 1948.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.