Read More
Date: 19-9-2018
![]()
Date: 25-4-2019
![]()
Date: 2-5-2019
![]() |
"The" Jacobi identity is a relationship
![]() |
(1) |
between three elements ,
, and
, where
is the commutator. The elements of a Lie algebra satisfy this identity.
Relationships between the Q-functions are also known as Jacobi identities:
![]() |
(2) |
equivalent to the Jacobi triple product (Borwein and Borwein 1987, p. 65) and
![]() |
(3) |
where
![]() |
(4) |
is the complete elliptic integral of the first kind, and
. Using Weber functions
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(5) and (6) become
![]() |
(8) |
![]() |
(9) |
(Borwein and Borwein 1987, p. 69).
REFERENCES:
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Schafer, R. D. An Introduction to Nonassociative Algebras. New York: Dover, p. 3, 1996.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|