1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الجبر : الجبر البولياني :

SYMBOLIC LOGIC AND THE ALGEBRA OF PROPOSITIONS-Functionally complete sets of operations

المؤلف:  J. ELDON WHITESITT

المصدر:  BOOLEAN ALGEBRA AND ITS APPLICATIONS

الجزء والصفحة:  68-69

9-1-2017

1269

 A set of operations is functionally complete provided every propositional function can be expressed entirely in terms of operations in the set. To exhibit a functionally complete set, we recall that every propositional function has a truth table.  Further, every truth table corresponds to a unique expression in dis- junctive (or conjunctive) normal form, involving only the operations  (+),(.) and ('). Hence the set {+,. , '} is functionally complete.

Since the proposition pq is equal to the proposition (p' + q')' by the law of De Morgan, it is possible to replace each occurrence of conjunction in any propositional function with an equivalent expression involving only (+) and ('). This shows that {+, '} is a functionally complete set of operations. Other functionally complete sets are {.,΄}and { →, '}.

It is possible to define a single operation which constitutes a functionally complete set. Suppose that we define p↓q by Table 1-1. This

TABLE 1-1

DEFINITION OF p↓q

operation can be interpreted as "not both p and q." To see how this operation alone constitutes a functionally complete set, consider Table 1-2. From this table, we observe that p' = p ↓ p and p + q = (p↓p) I (q ↓q). But we have shown that every propositional function can be expressed in terms of (+) and ('). Each occurrence of (+) and (')  may be replaced by the equivalent expression in terms of (↓), and henceevery propositional function can be written entirely in terms of the operation (↓). The operation (↓) is one of two operations known as Shefer stroke functions.

Table 1-2

 

 

 

EN

تصفح الموقع بالشكل العمودي