تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
THE ALGEBRA OF SETS-Fundamental laws
المؤلف:
J. ELDON WHITESITT
المصدر:
BOOLEAN ALGEBRA AND ITS APPLICATIONS
الجزء والصفحة:
7-8
10-1-2017
1393
In Section (Venn diagrams) some of the basic identities which are valid in the algebra of sets (and in any Boolean algebra) were mentioned in connection with Venn diagrams. These laws and others which will be used throughout this book are listed below. The laws are numbered, for convenience of reference. The names given are those commonly used, although some of the names reflect one particular application, rather than Boolean algebra in general. For example, "complementation" suggests the application to algebra of sets, whereas "tautology" suggests the application to symbolic logic. No proofs for these laws are given, but each may be justified intuitively by the use of an appropriate Venn diagram.
If 1 denotes the universal set and 0 denotes the null set, the following
identities are valid in the algebra of sets for arbitrary sets X, Y, and Z:
COMMUTATIVE LAWS
(la) XY = YX (lb) X + Y = Y + X
ASSOCIATIVE LAWS
(2a) X(YZ) = (XY)Z (2b) X + (Y + Z) = (X + Y) + Z
DISTRIBUTIVE LAWS
(3a) X (Y + Z) = X Y + XZ (3b) X + YZ = (X + Y) (X +Z)
LAWS OF TAUTOLOGY
(4a) XX = X (4b) X + X = X
LAWS OF ABSORPTION
(5a) X(X + Y) = X (5b) X + XY = X
LAWS OF COMPLEMENTATION
(6a) XX' = 0 (6b) X + X' = 1
LAW OF DOUBLE COMPLEMENTATION
(7) (X')' = X
LAWS OF DE MORGAN
(8a) (XY)' = X' + Y' (8b) (X + Y)' = X'Y'
OPERATIONS WITH 0 AND 1
(9a) OX = 0 (9b) 1 + X = 1
(10a) 1X = X (10b) 0 + X = X
(11a) 0' = 1 (11b) 1' = 0
Note that many of these laws are already familiar as laws which hold in the algebra of real numbers. However, (3b), (4a), (4b), (5a), and (5b) are not valid for numbers, and laws involving complementation obviously do not apply to numbers. It is perhaps surprising that any similarity at all is evident. Since some similarity does exist, it is especially important to study the ways in which this algebra differs from ordinary algebra.
Among the differences is the fact that expressions such as 2X and X2 will never appear in the algebra of sets. The laws of tautology make such expressions unnecessary. An interesting and useful property of Boolean algebra is the principle of duality. An examination of the laws will show that if, in any identity, each union is replaced by intersection, each intersection by union, 0 by 1, and 1 by 0, the resulting equation is also an identity. This rule holds generally in the algebra of sets and, as we shall see in Chapter(BOOLEAN ALGEBRA), in any Boolean algebra.