تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
SYMBOLIC LOGIC AND THE ALGEBRA OF PROPOSITIONS-Quantifiers
المؤلف:
J. ELDON WHITESITT
المصدر:
BOOLEAN ALGEBRA AND ITS APPLICATIONS
الجزء والصفحة:
58-61
9-1-2017
1305
In our consideration of logic, we have talked about propositions and the ways in which they can be combined to form new propositions, but have given little or no attention to the way in which simple propositions are constructed. Discussion of words and phrases within propositions will, for the most part, be outside the scope of this text. However, to understand some very important types of mathematical propositions, it is essential to mention one such topic, namely, the construction and meaning of propositions containing quantifiers. The following are examples of propositions which contain quantifiers:
some men are wealthy;
all men are prejudiced;
no man is patient.
The words some, all, and no are quantifiers. They tell us "how many" of a certain set of things is being considered. Many statements do not specifically contain quantifiers although quantification is implied. Consider the following mathematical propositions in the form of equations:
x2+4x=7,
x2 - 4 = (x + 2) (x - 2).
The first is true in the sense that for at least one number x, x2 + 4x = 7, and the second is true in the more general sense that for every number x, x2 - 4 = (x + 2) (x - 2). The first equation could be proven false only by showing that no number x satisfies the equation, but the second could be shown to be false by exhibiting a single number x which fails to satisfy the equation. It is important, then, to distinguish carefully between these types of propositions.
We define the symbol ∀xp to mean that for every x in a given set, the proposition p is true. ∀x is called the universal quantifier of the variable x and is usually read "for all x" or "for every x." We will define the symbol ∃xp to mean that for one or more elements x of a certain set of elements, the proposition p is true. ∃x is called the existential quantifier of the variable x and is usually read "there exists an x such that p" or"for at least one x, p" or, less precisely, "for some x, p."
Since each quantifier refers to a particular set of permissible values for the variable x, this set must be mentioned. Frequently, this set is described in a sentence preceding the proposition that contains the quantifier, although the set may be included in the proposition itself. For instance, the propositions above may be written in any of the following ways:
there exists a number x such that x2 + 4x = 7;
for all numbers x, x2 - 4 = (x + 2)(x - 2).
Alternatively, we may write :
∃xp, where x belongs to the set of all numbers
and where p is the proposition x2 + 4x = 7;
∀xq, where x belongs to the set of all numbers
and where q is the proposition x2 - 4 = (x + 2) (x - 2).
Still other forms are:
ifxisanumber, ∃x(x2+4x = 7);
if x is a number, ∀x[x2 - 4 = (x + 2)(x - 2)].
It is important to know how the negations of propositions involving quantifiers are formed. A little reflection will justify the following formulas:
(∃xp)' = ∀xp'
(∀xp)' = ∃xp'.
Since the symbols for quantification cannot be manipulated in the algebra of propositions, they will not be used to any great extent in this text. They are introduced primarily to specify the rules for negation. Ordinarily, we will continue to denote propositions, quantified or not, by single letters. However, to word a given symbolic expression in proper English, it is necessary to understand the nature of any quantifiers which are involved. A third quantifier should be mentioned because of its frequent occurrence. The following illustration will serve. The proposition "no man is patient" contains the quantifier no. We will interpret this as being equivalent to the proposition "all men are impatient" or, to put it in symbolic form, dxp', where x is a man and p is the proposition "x is patient."