1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التحليل : التحليل العقدي :

Green,s Function

المؤلف:  Arfken, G. B.; Weber, H.; and Harris, F. E.

المصدر:  Mathematical Methods for Physicists, 7th ed.: A Comprehensive Guide. Orlando, FL: Academic Press, 2012.

الجزء والصفحة:  ...

26-12-2018

2140

Green's Function

GreensFunctionPointDisplacement

Generally speaking, a Green's function is an integral kernel that can be used to solve differential equations from a large number of families including simpler examples such as ordinary differential equations with initial or boundary value conditions, as well as more difficult examples such as inhomogeneous partial differential equations (PDE) with boundary conditions. Important for a number of reasons, Green's functions allow for visual interpretations of the actions associated to a source of force or to a charge concentrated at a point (Qin 2014), thus making them particularly useful in areas of applied mathematics. In particular, Green's function methods are widely used in, e.g., physics, and engineering.

More precisely, given a linear differential operator L=L(x) acting on the collection of distributions over a subset Omega of some Euclidean space R^n, a Green's function G=G(x,s) at the point s in Omega corresponding to L is any solution of

 LG(x,s)=delta(x-s)

(1)

where delta denotes the delta function. The motivation for defining such a function is widespread, but by multiplying the above identity by a function f(s) and integrating with respect to s yields

 intLG(x,s)f(s)ds=intdelta(x-s)f(s)ds.

(2)

The right-hand side reduces merely to f(x) due to properties of the delta function, and because L is a linear operator acting only on x and not on s, the left-hand side can be rewritten as

 L(intG(x,s)f(s)ds).

(3)

This reduction is particularly useful when solving for u=u(x) in differential equations of the form

 Lu(x)=f(x),

(4)

where the above arithmetic confirms that

 Lu(x)=L(intG(x,s)f(s)ds)

(5)

and whereby it follows that u has the specific integral form

 u(x)=intG(x,s)f(s)ds.

(6)

The figure above illustrates both the intuitive physical interpretation of a Green's function as well as a relatively simple associated differential equation with which to compare the above definition (Hartmann 2013). In particular, it shows a taut rope of length l suspended between two walls, held into place by an identical horizontal force H applied on each of its ends, and a lateral load F placed at some interior point x on the rope. Let  be the point corresponding to x on the deflected rope, suppose the downward force F is constant, say F=1, and let u(x) denote the deflection of the rope. Corresponding to this physical system is the differential equation

(7)

for 0<x<l with u(0)=u(l)=0, a system whose simplicity allows both its solution u(x) and its Green's function G(x,y) to be written explicitly:

 u(x)=F/(2H)(lx-x^2)

(8)

and

 G(x,y)=1/(Hl){y(l-x)   for y<=x; x(l-y)   for x<=y,

(9)

respectively. As demonstrated in the above figure, the displaced rope has the piecewise linear format given by G=G(x,y) above, thus confirming the claim that the Green's function G associated to this system represents the action of the horizontal rope corresponding to the application of a force F.

A Green's function taking a pair of arguments (x,s) is sometimes referred to as a two-point Green's function. This is in contrast to multi-point Green's functions which are of particular importance in the area of many-body theory.

As an elementary example of a two-point function as defined above, consider the problem of determining the potential psi(r) generated by a charge distribution whose charge density is rho(r), whereby applications of Poisson's equation and Coulomb's law to the potential at r_1 produced by each element of charge rho(r_2)d^3r_2 yields a solution

 psi(r_1)=1/(4piepsilon_0)intd^3r_2(rho(r_2))/(|r_1-r_2|)

(10)

which holds, under certain conditions, over the region where rho(r_2)!=0. Because the right-hand side can be viewed as an integral operator converting rho into psi, one can rewrite this solution in terms of a Green's function G=G(r_1,r_2)having the form

 G(r_1,r_2)=1/(4piepsilon_0)1/(|r_1-r_2|),

(11)

whereby the solution can be rewritten:

 psi(r_1)=intd^3r_2G(r_1,r_2)rho(r_2)

(12)

(Arfken 2012).

GreensFunctionExample

The above figure shows the Green's function associated to the solution of the psi-rho equation discussed above where here, epsilon_0=4 and r_1, respectively r_2, is plotted on the x-, respectively y-, axis.

A somewhat comprehensive list of Green's functions corresponding to various differential equations is maintained online by Kevin Cole (Cole 2000).

Due to the multitude of literature written on Green's functions, several different notations and definitions may emerge, some of which are topically different than the above but which in general do not affect the important properties of the results. As the above example illustrates, for instance, some authors prefer to denote the variables x and s in terms of vectors r_1 and r_2 to emphasize the fact that they're elements of R^n for some n which may be larger than 1 (Arfken 1985). It is also relatively common to see the definition with a negative sign so that G is defined to be the function for which

 LG(x,s)=-delta(x-s),

(13)

but due to the fact that this purely-physical consideration has no effect on the underlying mathematics, this point of view is generally overlooked. Several other notations are also known to exist for a Green's function, some of which include the use of a lower-case g=g(x,s) in place of G(x,s) (Stakgold 1979) as well as the inclusion of a vertical line instead of a comma, e.g.,G(x,s)=G(x|s) (Duffy 2001).

In other instances, literature presents definitions which are intimately connected to the contexts in which they're presented. For example, some authors define Green's functions to be functions which satisfy a certain set of conditions, e.g.,existence on a special kind of domain, association with a very particular differential operator L, or satisfaction of a precise set of boundary conditions. One of the most common such examples can be found in notes by, e.g., Speck, where a Green's function is defined to satisfy Delta_sG(x,s)=delta(x) for points (x,s) in Omega×Omega and G(x,sigma)=0 for all points sigma lying in the boundary partialOmega of Omega (Speck 2011). This particular definition presents an integral kernel corresponding to the solution of a generalized Poisson's equation and would therefore face obvious limitations when being adapted to a more general setting. On the other hand, such examples aren't without their benefits. In the case of the generalized Poisson example above, for instance, each such Green's function G can be split so that

 G(x,s)=g_f(x,s)+u_R(x,s)

(14)

where -Deltag_f(x,s)=delta(x-s) and -Deltau_R(x,s)=0 for the regular Laplacian Delta=Delta_s (Hartman 2013). In such situations, g_f=g_f(x,s) is known as the fundamental solution of the underlying differential equation and u_R=u_R(x,s) is known as its regular solution; as such, g_f and u_R are sometimes called the fundamental and regular parts of G, respectively.

Several fundamental properties of a general Green's function follow immediately (or almost so) from its definition and carry over to all particular instances. For example, if the kernel of the operator L is non-trivial, then there may be several Green's functions associated to a single operator; as a result, one must exhibit caution when referring to "the" Green's function. Green's functions satisfy an adjoint symmetry in their two arguments so that

 G(x,s)=G^*(s,x)

(15)

where here, G^* is defined to be the solution of the equation

 L^*G^*(s,x)=delta(x-s).

(16)

Here, L^* is the adjoint of L. One immediate corollary of this fact is that for self-adjoint operators LG is symmetric:

 G(x,s)=G(s,x).

(17)

This identity is often called the reciprocity principle and says, in physical terms, that the response at x caused by a unit source at s is the same as the response at s due to a unit force at x (Stakgold 1979).

The essential property of any Green's function is that it provides a way to describe the response of an arbitrary differential equation solution to some kind of source term in the presence of some number of boundary conditions (Arfken et al. 2012). Some authors consider a Green's function to serve roughly an analogous role in the theory of partial differential equations as do Fourier series in the solution of ordinary differential equations (Mikula and Kos 2006).

For more abstract scenarios, a number of concepts exist which serve as context-specific analogues to the notion of a Green's function. For instance, in functional analysis, it is often useful to consider a so-called generalized Green's function which has many analogous properties when integrated abstractly against functionals rather than functions. Indeed, such generalizations have yielded an entirely analogous branch of theoretical PDE analysis and are themselves the focus of a large amount of research.


REFERENCES:

Arfken, G. "Nonhomogeneous Equation--Green's Function," "Green's Functions--One Dimension," and "Green's Functions--Two and Three Dimensions." §8.7 and §16.5-16.6 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 480-491 and 897-924, 1985.

Arfken, G. B.; Weber, H.; and Harris, F. E. Mathematical Methods for Physicists, 7th ed.: A Comprehensive Guide. Orlando, FL: Academic Press, 2012.

Cole, K. D. "Green's Function Library." 2000. http://www.greensfunction.unl.edu/home/index.html.

Cole, K. D.; Beck, J. V.; Haji-Sheikh, A.; and Litkouhi, B. Heat Conduction Using Green's Functions, 2nd Edition. Boca Raton, FL: Taylor & Francis, 2011.

Duffy, D. G. Green's Functions with Applications. Boca Raton, FL: Chapman & Hall/CRC, 2001.

Hartmann, F. Green's Functions and Finite Elements. Heidelberg, Germany: Springer-Verlag, 2013.

Mikula, S. and Kos, A. "Using GNU Scientific Library for Temperature Computation in VLSI Systems." 2006. http://www.scalak.elektro.agh.edu.pl/files/mikula_kos_nti_green.pdf.

Qin, Q. "Green's Functions of Magneto-Electro-Elastic Plate Under Thermal Loading." In Encyclopedia of Thermal Stresses.Netherlands: Springer Netherlands, pp. 2096-2103, 2014.

Speck, J. "The Fundamental Solution and Green Functions." 18.152--Introduction to PDEs. MIT OpenCourseWare, 2011. http://math.mit.edu/~jspeck/18.152_Fall2011/Lecture%20notes/18152%20lecture%20notes%20-%207.pdf.

Stakgold, I. Green's Functions and Boundary Value Problems. New York: Wiley, 1979.

EN

تصفح الموقع بالشكل العمودي